论文标题

Li和Sio4的软静脉耦合振动使无定形LI2SI2O5启用锂离子扩散

Soft Anharmonic Coupled Vibrations of Li and SiO4 Enable Li-ion Diffusion in Amorphous Li2Si2O5

论文作者

Kumar, Sajan, Gupta, Mayanak K., Goel, Prabhatasree, Mittal, Ranjan, Mukhopadhyay, Sanghamitra, Le, Manh Duc, Shukla, Rakesh, Achary, Srungarpu N., Tyagi, Avesh K., Chaplot, Samrath L.

论文摘要

我们使用Ab-Initio Molecular Dynamics模拟补充的Ab-Initio(Qens)和非弹性中子散射(INS)研究(AIMD)介绍了关于原子动力学和LI+扩散的研究(QENS)和非弹性中子中子散射(INS)研究(AIMD)。 LI2SI2O5的无定形相中的底子测量结果显示一个狭窄的温度窗口(700 <t <775 K),表现出与快速的LI+扩散和Sio4单位放松对晶体相对应的显着的准射流扩展。我们的INS测量值清楚地表明,在超离子非晶相中,在低能量(低E)处的大声声子密度(PDOS)存在,该相中消失在非缺乏的晶体相中,证实了低-E模式在LI+扩散中的作用。沮丧的能量景观和宿主的灵活性(由于SIO4多面体单位的随机取向和振动运动,因此在扩散LI+方面起着至关重要的作用。我们使用AIMD模拟来确定这些低E模式涉及大量的LI振动,并在无定形相中结合SIO4振动。在升高的温度下,这些振动动力学通过像耦合机制这样的桨轮加速了LI+扩散。这些SIO4振动动力学以上是775 K,通过将SIO4和LI+锁定到自由能景观的更深最小值中,并在结晶相中消失,将系统驱动到结晶相。实验和模拟都提供了有关LI2SI2O5中原子水平随机和振动动力学的有价值信息,以及它们在LI+扩散和玻璃化中的作用。

We present the investigations on atomic dynamics and Li+ diffusion in crystalline and amorphous Li2Si2O5 using quasielastic (QENS) and inelastic neutron scattering (INS) studies supplemented by ab-initio molecular dynamics simulations (AIMD). The QENS measurements in the amorphous phase of Li2Si2O5 show a narrow temperature window (700 < T < 775 K), exhibiting significant quasielastic broadening corresponding to the fast Li+ diffusion and relaxation of SiO4 units to the crystalline phase. Our INS measurements clearly show the presence of large phonon density of states (PDOS) at low energy (low-E) in the superionic amorphous phase, which disappear in the non-superionic crystalline phase, corroborating the role of low-E modes in Li+ diffusion. The frustrated energy landscape and host flexibility (due to random orientation and vibrational motion of SiO4 polyhedral units) play an essential role in diffusing the Li+. We used AIMD simulations to identify that these low-E modes involve a large amplitude of Li vibrations coupled with SiO4 vibrations in the amorphous phase. At elevated temperatures, these vibrational dynamics accelerate the Li+ diffusion via a paddle-wheel like coupling mechanism. Above 775 K, these SiO4 vibrational dynamics drive the system into the crystalline phase by locking SiO4 and Li+ into deeper minima of the free energy landscape and disappear in the crystalline phase. Both experiments and simulations provide valuable information about the atomic level stochastic and vibrational dynamics in Li2Si2O5 and their role in Li+ diffusion and vitrification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源