论文标题

在$ \ Mathcal {i} $ - 覆盖度量空间的图像

On $\mathcal{I}$-covering images of metric spaces

论文作者

Zhou, Xiangeng, Lin, Shou

论文摘要

令$ \ mathcal {i} $是$ \ mathbb {n} $的理想选择。映射$ f:x \ to y $称为$ \ mathcal {i} $ - 覆盖映射提供了一个序列$ \ {y_ {y_ {n} \} _ {n \ in \ mathbb n} $ is $ \ nathbb n} $ $ \ {x_ {n} \} _ {n \ in \ mathbb n} $收敛到$ x $ in $ x $中的point $ x $,因此$ x \ in f^{ - 1}(y)$ in f^{ - x_n $ in f^{-1}(y_n)$。在本文中,我们研究了具有某些$ \ MATHCAL {i} $ - $ CS $ -NETWORKS的空间,并研究了在某些$ \ Mathcal {i} $下的度量空间图像的表征,并覆盖映射,这会提示我们发现$ \ Mathcal {i} $ - $ CSF $ -Networks。获得以下主要结果: (1)一个$ x $具有$ \ mathcal {i} $ - $ csf $ -network,并且仅当$ x $是连续的,而$ \ natercal {i} $ - 覆盖度量空间的图像。 (2)空间$ x $是$ \ MATHCAL {i} $ - $ CSF $ - 可容纳空间,并且仅当$ x $是连续的$ \ Mathcal {i} $ - 覆盖和边界$ s $ s $ imimage a的公制空间。 (3)一个空格$ x $具有可点数的$ \ MATHCAL {i} $ - $ CS $ -NETWORD,并且仅当$ x $是连续的$ \ Mathcal {i} $ - 覆盖率 - 覆盖率 - $ s $ s $ - $ s $ - $ s $ imimage。

Let $\mathcal{I}$ be an ideal on $\mathbb{N}$. A mapping $f:X\to Y$ is called an $\mathcal{I}$-covering mapping provided a sequence $\{y_{n}\}_{n\in\mathbb N}$ is $\mathcal{I}$-converging to a point $y$ in $Y$, there is a sequence $\{x_{n}\}_{n\in\mathbb N}$ converging to a point $x$ in $X$ such that $x\in f^{-1}(y)$ and each $x_n\in f^{-1}(y_n)$. In this paper we study the spaces with certain $\mathcal{I}$-$cs$-networks and investigate the characterization of the images of metric spaces under certain $\mathcal{I}$-covering mappings, which prompts us to discover $\mathcal{I}$-$csf$-networks. The following main results are obtained: (1) A space $X$ has an $\mathcal{I}$-$csf$-network if and only if $X$ is a continuous and $\mathcal{I}$-covering image of a metric space. (2) A space $X$ is an $\mathcal{I}$-$csf$-countable space if and only if $X$ is a continuous $\mathcal{I}$-covering and boundary $s$-image of a metric space. (3) A space $X$ has a point-countable $\mathcal{I}$-$cs$-network if and only if $X$ is a continuous $\mathcal{I}$-covering and $s$-image of a metric space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源