论文标题
在随机组中存在2个复合物的相变的相变
Phase transition for the existence of van Kampen 2-complexes in random groups
论文作者
论文摘要
格罗莫夫(Gromov)表明,(1993年)的概率很高,每一个有界和减少的货车kampen图$ d $ d $在密度$ d $下的随机组都满足等值不平等$ | \ partial d | \ eartial d | \ geq(1-2d-s)| d | d | \ ell $。在本文中,我们适应了Gruber-Mackay的随机三角形群体,显示了这种不平等的未还原的2复合版本。 此外,对于给定的几何形式的任何2个复合$ y $,我们都会表现出一个相位过渡:我们明确地给出了一个关键的密度$ d_c $,仅取决于$ y $,以便在$ d $ d $的随机组中,如果$ d <d_c $,则没有减少van kampen 2-complex y form y $ y $ y $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $;虽然如果$ d> d_c $,则会减少$ y $的2个复合货车Kampen。 作为一个应用程序,我们显示了$ c(p)$小型结构条件的相转换:对于一个密度$ d $的随机组,如果$ d <1/(p+1)$,则满足$ c(p)$;而如果$ d> 1/(p+1)$,则不满足$ c(p)$。
Gromov showed that (1993) with high probability, every bounded and reduced van Kampen diagram $D$ of a random group at density $d$ satisfies the isoperimetric inequality $|\partial D|\geq (1-2d-s)|D|\ell$. In this article, we adapt Gruber-Mackay's prove for random triangular groups, showing a non-reduced 2-complex version of this inequality. Moreover, for any 2-complex $Y$ of a given geometric form, we exhibit a phase transition: we give explicitly a critical density $d_c$ depending only on $Y$ such that, in a random group at density $d$, if $d<d_c$ then there is no reduced van Kampen 2-complex of the form $Y$; while if $d>d_c$ then there exists reduced van Kampen 2-complexes of the form $Y$. As an application, we show a phase transition for the $C(p)$ small-cancellation condition: for a random group at density $d$, if $d<1/(p+1)$ then it satisfies $C(p)$; while if $d>1/(p+1)$ then it does not satisfy $C(p)$.