论文标题
li-yorke混乱在G空间上的地图
Li-Yorke chaos for maps on G-Spaces
论文作者
论文摘要
我们介绍了li-yorke混乱的定义,以在G空间上的地图F中介绍。 Li-Yorke混乱意味着G-Li-Yorke混乱,而匡威并非如此。然后,我们给出了足够的条件,使F在G-Li-Yorke的意义上使F变得混乱。另外,我们证明,如果F是G传输的,并且存在F和G中的所有地图的共同固定点,则F在G-Li-Yorke的意义上是混乱的。
We introduce the definition of Li-Yorke chaos for the map f on G-spaces, and show G-Li-Yorke chaos is iterable for f. Li-Yorke chaos implies G-Li-Yorke chaos, while the converse is not true. Then we give a sufficient condition for f to be chaotic in the sense of G-Li-Yorke. Also, we prove that if f is G-transitive and there exists a common fixed point for f and all of the maps in G, then f is chaotic in the sense of G-Li-Yorke.