论文标题
无监督的密集核检测和分割,具有组织学图像的先验自激活图
Unsupervised Dense Nuclei Detection and Segmentation with Prior Self-activation Map For Histology Images
论文作者
论文摘要
在医学图像细分中,有监督的深度学习模型的成功取决于详细的注释。但是,劳动密集型的手动标记效率很高且效率低下,尤其是在密集的物体细分中。为此,我们通过先前的自动激活模块(PSM)提出了一种基于自我监督的学习方法,该方法从输入图像中生成自动激活图,以避免标记成本并进一步为下游任务产生伪口罩。具体来说,我们首先使用自我监督的学习训练神经网络,并在网络的浅层层中利用梯度信息来生成自激活图。之后,然后将语义引导的发电机作为管道引入,以将视觉表示从PSM转换为像素级语义伪掩码,以进行下游任务。此外,采用了由核检测网络和核分割网络组成的两阶段训练模块,以实现最终分割。实验结果显示了两个公共病理数据集的有效性。与其他完全监督和弱监督的方法相比,我们的方法可以实现竞争性能而无需任何手动注释。
The success of supervised deep learning models in medical image segmentation relies on detailed annotations. However, labor-intensive manual labeling is costly and inefficient, especially in dense object segmentation. To this end, we propose a self-supervised learning based approach with a Prior Self-activation Module (PSM) that generates self-activation maps from the input images to avoid labeling costs and further produce pseudo masks for the downstream task. To be specific, we firstly train a neural network using self-supervised learning and utilize the gradient information in the shallow layers of the network to generate self-activation maps. Afterwards, a semantic-guided generator is then introduced as a pipeline to transform visual representations from PSM to pixel-level semantic pseudo masks for downstream tasks. Furthermore, a two-stage training module, consisting of a nuclei detection network and a nuclei segmentation network, is adopted to achieve the final segmentation. Experimental results show the effectiveness on two public pathological datasets. Compared with other fully-supervised and weakly-supervised methods, our method can achieve competitive performance without any manual annotations.