论文标题
无线网络中的零触电IOE的神经符号可解释的人工智能双胞胎
Neuro-symbolic Explainable Artificial Intelligence Twin for Zero-touch IoE in Wireless Network
论文作者
论文摘要
可解释的人工智能(XAI)双胞胎系统将成为第六代(6G)无线网络的零接触网络和服务管理(ZSM)的基本推动力。一个可靠的ZSM Xai Twin系统需要两种复合材料:一种极端的分析能力,用于离散所有事物的互联网(IOE)的物理行为(IOE)和严格的方法来表征这种行为的推理。在本文中,提出了一种新型的神经符号可解释的人工智能双框架,以使可信赖的ZSM成为无线IOE。 Xai双胞胎的物理空间执行神经网络驱动的多元回归,以捕获时间依赖时间的无线IOE环境,同时确定IOE服务汇总的无意识决策。随后,Xai双胞胎的虚拟空间构建了有向的无环图(DAG)基于贝叶斯网络,该网络可以通过一阶概率概率语言模型来推断无意识决策的符号推理得分。此外,提出了一个基于贝叶斯多臂匪徒的学习问题,以减少预期的解释分数与所提出的神经符号XAI Twin的当前获得的分数之间的差距。为了解决ZSM中可扩展,模块化和无状态管理功能的挑战,提出的神经符号XAI Twin Twin框架由两个学习系统组成:1)一个隐性学习者,在物理空间中充当无意识的学习者,以及2)可以根据隐含的象征性理解的明确的精益来基于隐含的符号推理,并根据隐含的学习者的决定和先验的学习者的决定。实验结果表明,提出的神经符号XAI双胞胎的精度约为96.26%,同时确保在推理和闭环自动化方面从18%到44%的信任得分。
Explainable artificial intelligence (XAI) twin systems will be a fundamental enabler of zero-touch network and service management (ZSM) for sixth-generation (6G) wireless networks. A reliable XAI twin system for ZSM requires two composites: an extreme analytical ability for discretizing the physical behavior of the Internet of Everything (IoE) and rigorous methods for characterizing the reasoning of such behavior. In this paper, a novel neuro-symbolic explainable artificial intelligence twin framework is proposed to enable trustworthy ZSM for a wireless IoE. The physical space of the XAI twin executes a neural-network-driven multivariate regression to capture the time-dependent wireless IoE environment while determining unconscious decisions of IoE service aggregation. Subsequently, the virtual space of the XAI twin constructs a directed acyclic graph (DAG)-based Bayesian network that can infer a symbolic reasoning score over unconscious decisions through a first-order probabilistic language model. Furthermore, a Bayesian multi-arm bandits-based learning problem is proposed for reducing the gap between the expected explained score and the current obtained score of the proposed neuro-symbolic XAI twin. To address the challenges of extensible, modular, and stateless management functions in ZSM, the proposed neuro-symbolic XAI twin framework consists of two learning systems: 1) an implicit learner that acts as an unconscious learner in physical space, and 2) an explicit leaner that can exploit symbolic reasoning based on implicit learner decisions and prior evidence. Experimental results show that the proposed neuro-symbolic XAI twin can achieve around 96.26% accuracy while guaranteeing from 18% to 44% more trust score in terms of reasoning and closed-loop automation.