论文标题
耗散气体中分数平均能量的保存
Conservation of Fractional Mean Energy in Dissipative Gases
论文作者
论文摘要
我显示了一个非平凡的功能,给出了耗散麦克斯韦气体的碰撞能量级联中的守恒量:平均能量的分数 - 钙库扩展。该数量的保护直接导致暂时进化过程中固定的幂律能尾。在热极限中,该数量自然减少到标准平均能量。该保护定律及其扩展到与其他相互作用的颗粒扩展,并通过蒙特卡洛模拟非弹性气体进行了证明。
I show a nontrivial functional giving a conservation quantity in the collisional energy cascade of dissipative Maxwell gases: a fractional-calculus extension of the mean energy. The conservation of this quantity directly leads the power-law energy tail that is stationary during the temporal evolution. In the thermal limit, this quantity naturally reduces to the standard mean energy. This conservation law and its extension to particles with other interactions are demonstrated with a Monte-Carlo simulation for inelastic gases.