论文标题

一般相对论薄圆盘方程的渐近格林的功能解决方案

Asymptotic Green's function solutions of the general relativistic thin disc equations

论文作者

Mummery, Andrew

论文摘要

使用伪牛顿电位和渐近拉普拉斯模式匹配技术,计算了一般相对论薄圆盘方程的领先顺序绿色的函数解决方案。该解决方案对于消失的ISCO应力有效,可以通过确保近乎伊斯科,牛顿和全球WKB限制的领先顺序渐近行为来构建。尽管用于构建该解决方案的简化方法,但对于Kerr Spin参数$ a $和所有半径的所有值,它通常是准确的,而不到一般相对论圆盘方程的完整数值解决方案的一百分之一。这些解决方案将用于研究Kerr黑洞周围的时间依赖性积聚盘。

The leading order Green's function solutions of the general relativistic thin disc equations are computed, using a pseudo-Newtonian potential and asymptotic Laplace mode matching techniques. This solution, valid for a vanishing ISCO stress, is constructed by ensuring that it reproduces the leading order asymptotic behaviour of the near-ISCO, Newtonian, and global WKB limits. Despite the simplifications used in constructing this solution, it is typically accurate, for all values of the Kerr spin parameter $a$ and at all radii, to less than a percent of the full numerically calculated solutions of the general relativistic disc equations. These solutions will be of use in studying time-dependent accretion discs surrounding Kerr black holes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源