论文标题
脉冲星的重力镜头作为暗物质光环的探针
Gravitational lensing of pulsars as a probe of dark matter halos
论文作者
论文摘要
宇宙学中的一个特殊开放问题是,小尺度上的暗物质是否是块状的,形成了分布在银河系中的重力光晕。检验该假设固有的实际困难源于以下事实:在天体物理量表上,暗物质仅通过其与其他物体的重力相互作用而观察到。 本论文提出了一种基于重力镜头的解决方案,用于通过其在毫秒脉冲星观测中的签名来映射和表征暗物质光环。这涉及:首先,确定光环的参考框架中产生的时间延迟和放大表面;其次,在观察者的参考框架中获得相应的脉冲星签名;最后,将方法概括为在不同距离时多个光晕。我们讨论单镜和多个透镜都可以在观察上检测到延迟。 时间延迟的关键依赖性是光晕采用的密度曲线。我利用了各种建议的光晕质量曲线 - 椭圆形,施瓦茨柴尔德,水平盘镜头和navarro-frenk-white(NFW)密度曲线 - 适用于广泛的光环质量。我证明了汉克尔变换的使用以提高相对论时间延迟计算的效率。 由于其高旋转频率和周期稳定性,使用毫秒的脉冲星最好使用毫秒的脉冲星来识别此类光晕的观察性特征。我的方法在搜索镜头迹象时不需要进行重大调整,因此不需要实施专家数据减少管道。因此,我们可以轻松地利用来自现有和未来调查的数据。该方法很容易扩展到附近的球状簇和星系,在这种距离的脉冲星检测中进行了待处理。
A particular open problem in cosmology is whether dark matter on small scales is clumpy, forming gravitationally-bound halos distributed within the Galaxy. The practical difficulties inherent in testing this hypothesis stem from the fact that, on astrophysical scales, dark matter is solely observable via its gravitational interaction with other objects. This thesis presents a gravitational-lensing-based solution for the mapping and characterisation of low-mass, dark matter halos via their signature in millisecond pulsar observations. This involves: first, determining the time delay and magnification surfaces generated in the frame of reference of the halo; second, obtaining the corresponding pulsar signature in the reference frame of the observer; and last, generalising the method to multiple halos at varying distances. We discuss whether the delay is observationally detectable for both single and multiple lenses. The key dependency of the time delay is the density profile adopted for the halo. I utilise a variety of proposed halo mass profiles -- elliptical, Schwarzschild, horizontal-disc lenses and the Navarro-Frenk-White (NFW) density profile -- which are applicable over a broad range of halo masses. I demonstrate the use of Hankel transforms to increase the efficiency of the relativistic time delay calculation. The observational signatures of such halos are best identified using millisecond pulsars due to their high rotational frequencies and period stability. My method does not require major adjustments when searching for signs of lensing, thus it is unnecessary to implement specialist data reduction pipelines. Thus we can leverage data from both existing and future surveys easily. This method is readily extensible to nearby globular clusters and galaxies, pending improvements in pulsar detection at such distances.