论文标题

超出关键时间的2D森林射击过程

A 2D forest fire process beyond the critical time

论文作者

Berg, Jacob van den, Nolin, Pierre

论文摘要

我们在二维中研究森林火过程。在给定的平面晶格上,顶点以$ 1 $(最初都是空置的)独立切换到占用的,并且任何连接的组件“被烧毁”(其顶点即时变空),一旦其心脏跨度越过(通常大于典型的大型)阈值$ n,该模型的参数,该阈值$ n(通常很大)。 我们的分析提供了一个详细的描述,即$ n \ to \ infty $,其过程接近关键时间$ t_c $(在没有火灾的情况下会出现无限集群)。特别是我们证明了一个有点违反直觉的结果:存在$δ> 0 $,因此,如果概率很高,则原点不会在$ t_c +δ$之前燃烧。这为Van Den Berg和Brouwer的开放问题4.1提供了负面答案[COMM。数学。 Phys。,2006]。从非正式的话来说,结果可以用消防道的出现来解释,消防道的总密度可以忽略不计(如$ n \ to \ infty $),但对于恢复,它仍然足够强大。我们希望这种行为也适用于经典的Drossel-Schwabl模型。 本文的很大一部分致力于分析间隔$ [T_C,T_C +δ] $的回收率。这些恢复确实具有“显微镜”效应,但事实证明,它们对宏观尺度(实际上在相关的“中镜”量表上)的综合影响消失了,因为$ n \ to \ infty $。 为了证明这一点,我们使用Kiss,Manolescu和Sidoravicius的关键思想[Ann。 Probab。,2015],引入了适当的归纳论点,以扩展和加强其结果。然后,我们用它来证明,浓缩会导致我们早期与KISS的联合工作,同时在森林火灾过程中也可以实现较淡的渗透。正如我们所解释的那样,这里出现了重大困难,因为恢复破坏了冷冻渗透的良好空间马尔可夫特性。

We study forest fire processes in two dimensions. On a given planar lattice, vertices independently switch from vacant to occupied at rate $1$ (initially they are all vacant), and any connected component "is burnt" (its vertices become instantaneously vacant) as soon as its cardinality crosses a (typically large) threshold $N$, the parameter of the model. Our analysis provides a detailed description, as $N \to \infty$, of the process near and beyond the critical time $t_c$ (at which an infinite cluster would arise in the absence of fires). In particular we prove a somewhat counterintuitive result: there exists $δ> 0$ such that with high probability, the origin does not burn before time $t_c + δ$. This provides a negative answer to Open Problem 4.1 of van den Berg and Brouwer [Comm. Math. Phys., 2006]. Informally speaking, the result can be explained in terms of the emergence of fire lanes, whose total density is negligible (as $N \to \infty$), but which nevertheless are sufficiently robust with respect to recoveries. We expect that such a behavior also holds for the classical Drossel-Schwabl model. A large part of this paper is devoted to analyzing recoveries during the interval $[t_c, t_c + δ]$. These recoveries do have a "microscopic" effect, but it turns out that their combined influence on macroscopic scales (and in fact on relevant "mesoscopic" scales) vanishes as $N \to \infty$. In order to prove this, we use key ideas of Kiss, Manolescu and Sidoravicius [Ann. Probab., 2015], introducing a suitable induction argument to extend and strengthen their results. We then use it to prove that a deconcentration result in our earlier joint work with Kiss on volume-frozen percolation also holds for the forest fire process. As we explain, significant additional difficulties arise here, since recoveries destroy the nice spatial Markov property of frozen percolation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源