论文标题
超出关键时间的2D森林射击过程
A 2D forest fire process beyond the critical time
论文作者
论文摘要
我们在二维中研究森林火过程。在给定的平面晶格上,顶点以$ 1 $(最初都是空置的)独立切换到占用的,并且任何连接的组件“被烧毁”(其顶点即时变空),一旦其心脏跨度越过(通常大于典型的大型)阈值$ n,该模型的参数,该阈值$ n(通常很大)。 我们的分析提供了一个详细的描述,即$ n \ to \ infty $,其过程接近关键时间$ t_c $(在没有火灾的情况下会出现无限集群)。特别是我们证明了一个有点违反直觉的结果:存在$δ> 0 $,因此,如果概率很高,则原点不会在$ t_c +δ$之前燃烧。这为Van Den Berg和Brouwer的开放问题4.1提供了负面答案[COMM。数学。 Phys。,2006]。从非正式的话来说,结果可以用消防道的出现来解释,消防道的总密度可以忽略不计(如$ n \ to \ infty $),但对于恢复,它仍然足够强大。我们希望这种行为也适用于经典的Drossel-Schwabl模型。 本文的很大一部分致力于分析间隔$ [T_C,T_C +δ] $的回收率。这些恢复确实具有“显微镜”效应,但事实证明,它们对宏观尺度(实际上在相关的“中镜”量表上)的综合影响消失了,因为$ n \ to \ infty $。 为了证明这一点,我们使用Kiss,Manolescu和Sidoravicius的关键思想[Ann。 Probab。,2015],引入了适当的归纳论点,以扩展和加强其结果。然后,我们用它来证明,浓缩会导致我们早期与KISS的联合工作,同时在森林火灾过程中也可以实现较淡的渗透。正如我们所解释的那样,这里出现了重大困难,因为恢复破坏了冷冻渗透的良好空间马尔可夫特性。
We study forest fire processes in two dimensions. On a given planar lattice, vertices independently switch from vacant to occupied at rate $1$ (initially they are all vacant), and any connected component "is burnt" (its vertices become instantaneously vacant) as soon as its cardinality crosses a (typically large) threshold $N$, the parameter of the model. Our analysis provides a detailed description, as $N \to \infty$, of the process near and beyond the critical time $t_c$ (at which an infinite cluster would arise in the absence of fires). In particular we prove a somewhat counterintuitive result: there exists $δ> 0$ such that with high probability, the origin does not burn before time $t_c + δ$. This provides a negative answer to Open Problem 4.1 of van den Berg and Brouwer [Comm. Math. Phys., 2006]. Informally speaking, the result can be explained in terms of the emergence of fire lanes, whose total density is negligible (as $N \to \infty$), but which nevertheless are sufficiently robust with respect to recoveries. We expect that such a behavior also holds for the classical Drossel-Schwabl model. A large part of this paper is devoted to analyzing recoveries during the interval $[t_c, t_c + δ]$. These recoveries do have a "microscopic" effect, but it turns out that their combined influence on macroscopic scales (and in fact on relevant "mesoscopic" scales) vanishes as $N \to \infty$. In order to prove this, we use key ideas of Kiss, Manolescu and Sidoravicius [Ann. Probab., 2015], introducing a suitable induction argument to extend and strengthen their results. We then use it to prove that a deconcentration result in our earlier joint work with Kiss on volume-frozen percolation also holds for the forest fire process. As we explain, significant additional difficulties arise here, since recoveries destroy the nice spatial Markov property of frozen percolation.