论文标题
部分可观测时空混沌系统的无模型预测
Continual Learning by Modeling Intra-Class Variation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
It has been observed that neural networks perform poorly when the data or tasks are presented sequentially. Unlike humans, neural networks suffer greatly from catastrophic forgetting, making it impossible to perform life-long learning. To address this issue, memory-based continual learning has been actively studied and stands out as one of the best-performing methods. We examine memory-based continual learning and identify that large variation in the representation space is crucial for avoiding catastrophic forgetting. Motivated by this, we propose to diversify representations by using two types of perturbations: model-agnostic variation (i.e., the variation is generated without the knowledge of the learned neural network) and model-based variation (i.e., the variation is conditioned on the learned neural network). We demonstrate that enlarging representational variation serves as a general principle to improve continual learning. Finally, we perform empirical studies which demonstrate that our method, as a simple plug-and-play component, can consistently improve a number of memory-based continual learning methods by a large margin.