论文标题
左有序性和张订购的叶子
Left orderability and taut foliations with orderable cataclysm
论文作者
论文摘要
让$ m $成为连接,封闭,定向,不可约$ 3 $ - manifold。我们表明:如果$ m $允许使用有订单灾难的共同取向的拉特叶子$ \ MATHCAL {f} $,则$π_1(m)$是订购的。这提供了一个基本证据,即如果$ m $在不使用Thurston的Universal Circle Action的情况下,$π_1(m)$可以订购。此外,对于每个可闭合的3个杂志,都承认伪anosov $ x $带有可共同取向的稳定叶子,我们的结果适用于$ x $的奇异轨道结合的无限多个dehn填充物。
Let $M$ be a connected, closed, orientable, irreducible $3$-manifold. We show that: if $M$ admits a co-orientable taut foliation $\mathcal{F}$ with orderable cataclysm, then $π_1(M)$ is left orderable. This provides an elementary proof that $π_1(M)$ is left orderable if $M$ admits an Anosov flow with a co-orientable stable foliation without using Thurston's universal circle action. Furthermore, for every closed orientable 3-manifold that admits a pseudo-Anosov flow $X$ with a co-orientable stable foliation, our result applies to infinitely many of Dehn fillings along the union of singular orbits of $X$.