论文标题

戴尔:差分累积的局部效应,以提高和准确的全球解释

DALE: Differential Accumulated Local Effects for efficient and accurate global explanations

论文作者

Gkolemis, Vasilis, Dalamagas, Theodore, Diou, Christos

论文摘要

累积的局部效应(ALE)是一种准确估计特征效应的方法,克服了先前存在的方法的基本故障模式,例如部分依赖图。但是,ALE的近似值,即从训练集的有限样本中估算啤酒的方法,面临两个弱点。首先,在输入具有较高维度的情况下,它的扩展不是很好,其次,当训练集相对较小时,它很容易受到分发(OOD)的影响。在本文中,我们提出了一种新颖的啤酒近似,称为差异累积局部效应(DALE),可以在ML模型可区分并且可以访问自动差异框架的情况下使用。我们的建议具有显着的计算优势,使功能效应估计适用于具有接近零计算开销的高维机器学习方案。此外,戴尔不会创建人工点来计算特征效应,从而解决了由于采样而引起的误导估计。最后,我们正式证明,在某些假设下,戴尔是对啤酒的公正估计器,我们提出了一种量化解释标准误差的方法。使用合成数据集和实际数据集的实验证明了所提出的方法的值。

Accumulated Local Effect (ALE) is a method for accurately estimating feature effects, overcoming fundamental failure modes of previously-existed methods, such as Partial Dependence Plots. However, ALE's approximation, i.e. the method for estimating ALE from the limited samples of the training set, faces two weaknesses. First, it does not scale well in cases where the input has high dimensionality, and, second, it is vulnerable to out-of-distribution (OOD) sampling when the training set is relatively small. In this paper, we propose a novel ALE approximation, called Differential Accumulated Local Effects (DALE), which can be used in cases where the ML model is differentiable and an auto-differentiable framework is accessible. Our proposal has significant computational advantages, making feature effect estimation applicable to high-dimensional Machine Learning scenarios with near-zero computational overhead. Furthermore, DALE does not create artificial points for calculating the feature effect, resolving misleading estimations due to OOD sampling. Finally, we formally prove that, under some hypotheses, DALE is an unbiased estimator of ALE and we present a method for quantifying the standard error of the explanation. Experiments using both synthetic and real datasets demonstrate the value of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源