论文标题

无监督的域自适应底面图像分割,很少有标记的源数据

Unsupervised Domain Adaptive Fundus Image Segmentation with Few Labeled Source Data

论文作者

Yu, Qianbi, Liu, Dongnan, Zhang, Chaoyi, Zhang, Xinwen, Cai, Weidong

论文摘要

基于深度学习的分割方法已被广泛用于自动青光眼诊断和预后。实际上,不同的眼底摄像机获得的眼底图像在照明和强度方面差异很大。尽管最近的无监督域适应性(UDA)方法增强了模型对未标记的目标眼底数据集的概括能力,但它们始终需要来自源域中的足够标记的数据,从而带来辅助数据获取和注释成本。为了进一步促进眼底图像上跨域分割方法的数据效率,我们在这项工作中使用很少的标记源数据探索了UDA光盘和杯子分割问题。我们首先设计了一种基于搜索的多式不变机制,以使源数据样式多样化并增加数据量。接下来,提出了前景对象上的原型一致性机制,以促进不同图像样式下每种组织的特征对齐。此外,进一步设计了一个交叉式的自我监督学习阶段,以提高目标图像的细分性能。我们的方法的表现优于UDA底面分割下的几种最先进的UDA分割方法,几乎​​没有标记的源数据。

Deep learning-based segmentation methods have been widely employed for automatic glaucoma diagnosis and prognosis. In practice, fundus images obtained by different fundus cameras vary significantly in terms of illumination and intensity. Although recent unsupervised domain adaptation (UDA) methods enhance the models' generalization ability on the unlabeled target fundus datasets, they always require sufficient labeled data from the source domain, bringing auxiliary data acquisition and annotation costs. To further facilitate the data efficiency of the cross-domain segmentation methods on the fundus images, we explore UDA optic disc and cup segmentation problems using few labeled source data in this work. We first design a Searching-based Multi-style Invariant Mechanism to diversify the source data style as well as increase the data amount. Next, a prototype consistency mechanism on the foreground objects is proposed to facilitate the feature alignment for each kind of tissue under different image styles. Moreover, a cross-style self-supervised learning stage is further designed to improve the segmentation performance on the target images. Our method has outperformed several state-of-the-art UDA segmentation methods under the UDA fundus segmentation with few labeled source data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源