论文标题
高性能非富液液体金属热电材料
High-performance non-Fermi-liquid metallic thermoelectric materials
论文作者
论文摘要
在窄带半导体范式中搜索高性能热电(TE)材料已持续了近70年,并且显然受到一系列研究的阻碍。在这里,我们报告发现了一些金属化合物Taifexcu2x-1sb和Tail1.33SB,显示了超过许多TE半导体的热电器,以及与先进的TE材料相当的无尺寸优点图。还观察到,在低温下,在低温温度下,电阻率的准线性温度(T)依赖性和对数t依赖性电子特异性热与高热电器共存,突显了非纤维纤维 - 液体(NFL)与TE传输的电子量子量的强大耦合。电子结构分析揭示了与Fe-EG相关的局部磁矩,Fe-FE抗铁磁(AFM)相互作用在最接近的4C-4D站点上的相互作用以及两倍变性的EG轨道抗超磁性,在与fermi级别接近fermi级别的情况下,所有这些均与fermi级别的序列相结合,所有这些级别的均均为所有级数补偿以及平行的两通道围绕效应。由于在Heusler Crystal Grattice的等效4C/4D位点随机填充Fe/Cu,这些作用都被结构障碍强烈冥想。磁敏感性偏离了理想的抗铁磁性,但可以很好地拟合x(t)= 1/(θ +btα),似乎与以前讨论的强局部相关性的量子临界场景一致。我们的工作不仅打破了有希望的TE材料应该是大量掺杂的半导体的困境,而且还证明了高性能性能,NFL量子临界性和磁性波动之间的相关性,这为未来的研究打开了新的方向。
Searching for high-performance thermoelectric (TE) materials in the paradigm of narrow-bandgap semiconductors has lasted for nearly 70 years and is obviously hampered by a bottleneck of research now. Here we report on the discovery of a few metallic compounds, TiFexCu2x-1Sb and TiFe1.33Sb, showing the thermopower exceeding many TE semiconductors and the dimensionless figure of merits comparable with the state-of-the-art TE materials. A quasi-linear temperature (T) dependence of electrical resistivity in 2 K - 700 K and the logarithmic T-dependent electronic specific heat at low temperature are also observed to coexist with the high thermopower, highlighting the strong intercoupling of the non-Fermi-liquid (NFL) quantum critical behavior of electrons with TE transports. Electronic structure analysis reveals the existence of fluctuating Fe-eg-related local magnetic moments, Fe-Fe antiferromagnetic (AFM) interaction at the nearest 4c-4d sites, and two-fold degenerate eg orbitals antiferromagnetically coupled with the dual-type itinerant electrons close to the Fermi level, all of which infer to a competition between the AFM ordering and Kondo-like spin compensation as well as a parallel two-channel Kondo effect. These effects are both strongly meditated by the structural disorder due to the random filling of Fe/Cu at the equivalent 4c/4d sites of the Heusler crystal lattice. The magnetic susceptibility deviates from ideal antiferromagnetism but can be fitted well by x(T) = 1/(θ + BTα), seemingly being consistent with the quantum critical scenario of strong local correlation as discussed before. Our work not only breaks the dilemma that the promising TE materials should be heavily-doped semiconductors, but also demonstrates the correlation among high TE performance, NFL quantum criticality, and magnetic fluctuation, which opens up new directions for future research.