论文标题
部分可观测时空混沌系统的无模型预测
Trans2k: Unlocking the Power of Deep Models for Transparent Object Tracking
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Visual object tracking has focused predominantly on opaque objects, while transparent object tracking received very little attention. Motivated by the uniqueness of transparent objects in that their appearance is directly affected by the background, the first dedicated evaluation dataset has emerged recently. We contribute to this effort by proposing the first transparent object tracking training dataset Trans2k that consists of over 2k sequences with 104,343 images overall, annotated by bounding boxes and segmentation masks. Noting that transparent objects can be realistically rendered by modern renderers, we quantify domain-specific attributes and render the dataset containing visual attributes and tracking situations not covered in the existing object training datasets. We observe a consistent performance boost (up to 16%) across a diverse set of modern tracking architectures when trained using Trans2k, and show insights not previously possible due to the lack of appropriate training sets. The dataset and the rendering engine will be publicly released to unlock the power of modern learning-based trackers and foster new designs in transparent object tracking.