论文标题
Simper:简单的自我监督学习周期性目标
SimPer: Simple Self-Supervised Learning of Periodic Targets
论文作者
论文摘要
从人类的生理学到环境进化,自然界中的重要过程经常表现出有意义的周期性或准周期性变化。由于其固有的标签稀缺性,学习有限或没有监督的定期任务的有用表示是很大的好处。然而,现有的自我监督学习(SSL)方法忽略了数据中的内在周期性,并且无法学习捕获周期或频率属性的表示形式。在本文中,我们提出了Simper,这是一个简单的对比度SSL制度,用于学习数据中的周期性信息。为了利用周期性的归纳偏见,Simper引入了定制的增强,特征相似性度量以及对学习有效且健壮的周期性表示的广义对比损失。与最先进的SSL方法相比,对人类行为分析,环境感应和医疗保健领域中常见的现实世界任务的广泛实验证明了Simper的出色性能,突出了其有趣的属性,包括更好的数据效率,鲁棒性,对假性相关性以及分配转移的普遍化。代码和数据可在以下网址获得:https://github.com/yyzharry/simper。
From human physiology to environmental evolution, important processes in nature often exhibit meaningful and strong periodic or quasi-periodic changes. Due to their inherent label scarcity, learning useful representations for periodic tasks with limited or no supervision is of great benefit. Yet, existing self-supervised learning (SSL) methods overlook the intrinsic periodicity in data, and fail to learn representations that capture periodic or frequency attributes. In this paper, we present SimPer, a simple contrastive SSL regime for learning periodic information in data. To exploit the periodic inductive bias, SimPer introduces customized augmentations, feature similarity measures, and a generalized contrastive loss for learning efficient and robust periodic representations. Extensive experiments on common real-world tasks in human behavior analysis, environmental sensing, and healthcare domains verify the superior performance of SimPer compared to state-of-the-art SSL methods, highlighting its intriguing properties including better data efficiency, robustness to spurious correlations, and generalization to distribution shifts. Code and data are available at: https://github.com/YyzHarry/SimPer.