论文标题
自然界的最佳和简单性
Optima and Simplicity in Nature
论文作者
论文摘要
为什么自然界中简单,规则和对称形状很常见?许多自然形状是作为能量最小化或其他优化问题的解决方案而出现的,但是Optima与简单,常规形状和几何形状之间有一般关系吗?在这里,我们从算法信息理论中论证,对于基于物理和工程定律,对于自然界中常见的目标函数 - 最佳几何形状将是简单,规则和对称的。此外,我们得出了一个无效的模型预测,如果给定的几何形状是一个自然目标函数的最佳解决方案,那么它更有可能对另一个目标函数进行最佳或接近最佳。
Why are simple, regular, and symmetric shapes common in nature? Many natural shapes arise as solutions to energy minimisation or other optimisation problems, but is there a general relation between optima and simple, regular shapes and geometries? Here we argue from algorithmic information theory that for objective functions common in nature -- based on physics and engineering laws -- optimal geometries will be simple, regular, and symmetric. Further, we derive a null model prediction that if a given geometry is an optimal solution for one natural objective function, then it is a priori more likely to be optimal or close to optimal for another objective function.