论文标题

考虑人类行为多样性的混合流量中的自适应领先巡航控制

Adaptive Leading Cruise Control in Mixed Traffic Considering Human Behavioral Diversity

论文作者

Wang, Qun, Dong, Haoxuan, Ju, Fei, Zhuang, Weichao, Lv, Chen, Wang, Liangmo, Song, Ziyou

论文摘要

本文为连接和自动化的车辆(CAV)提出了一种自适应领先的巡航控制策略,并首先考虑其对以下人类驱动的车辆(HDV)的影响,其在统一的优化框架中具有不同的驾驶特性,以提高整体能源效率。使用下一代仿真数据集对HDV的CAR遵循行为进行统计校准。在典型的单车道跟随场景中,骑士和HDV共享道路,骑士的纵向速度控制可以通过避免不必要的加速和制动,从而大大减少以下HDV的能源消耗。此外,除了包括跟随汽车的安全性和交通效率在内的目标外,CAV和HDV的能源效率都纳入了增强学习的奖励功能中。从历史速度信息实时学习以下HDV的特定驾驶模式,以预测其在优化视野中的加速和功耗。进行了全面的模拟,以统计验证CAV对混合交通流量的整体能源效率的积极影响,并具有不确定和多样化的人类驾驶行为。仿真结果表明,整体能源效率平均提高了4.38%。

This paper presents an adaptive leading cruise control strategy for the connected and automated vehicle (CAV) and first considers its impact on the following human-driven vehicle (HDV) with diverse driving characteristics in the unified optimization framework for improved holistic energy efficiency. The car-following behaviors of HDV are statistically calibrated using the Next Generation Simulation dataset. In a typical single-lane car-following scenario where CAVs and HDVs share the road, the longitudinal speed control of CAVs can substantially reduce the energy consumption of the following HDV by avoiding unnecessary acceleration and braking. Moreover, apart from the objectives including car-following safety and traffic efficiency, the energy efficiencies of both CAV and HDV are incorporated into the reward function of reinforcement learning. The specific driving pattern of the following HDV is learned in real-time from historical speed information to predict its acceleration and power consumption in the optimization horizon. A comprehensive simulation is conducted to statistically verify the positive impacts of CAV on the holistic energy efficiency of the mixed traffic flow with uncertain and diverse human driving behaviors. Simulation results indicate that the holistic energy efficiency is improved by 4.38% on average.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源