论文标题

关于认知风格对用户对解释的理解的影响

On the Influence of Cognitive Styles on Users' Understanding of Explanations

论文作者

Riefle, Lara, Hemmer, Patrick, Benz, Carina, Vössing, Michael, Pries, Jannik

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Artificial intelligence (AI) is becoming increasingly complex, making it difficult for users to understand how the AI has derived its prediction. Using explainable AI (XAI)-methods, researchers aim to explain AI decisions to users. So far, XAI-based explanations pursue a technology-focused approach - neglecting the influence of users' cognitive abilities and differences in information processing on the understanding of explanations. Hence, this study takes a human-centered perspective and incorporates insights from cognitive psychology. In particular, we draw on the psychological construct of cognitive styles that describe humans' characteristic modes of processing information. Applying a between-subject experiment design, we investigate how users' rational and intuitive cognitive styles affect their objective and subjective understanding of different types of explanations provided by an AI. Initial results indicate substantial differences in users' understanding depending on their cognitive style. We expect to contribute to a more nuanced view of the interrelation of human factors and XAI design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源