论文标题

道路交通估算和基于分配的路线选择

Road traffic estimation and distribution-based route selection

论文作者

Kamphuis, Rens, Mandjes, Michel, Serra, Paulo

论文摘要

在路线选择问题中,驾驶员的个人喜好将决定她是否更喜欢旅行时间的路线,其均值较低和差异较高,而差异较高,而均值较高和差异较低。但是,实际上,这种风险规避问题通常被忽略,因为基于单一标准Dijkstra型算法选择了一条路线。此外,路由决策通常没有考虑到旅行时间平均值和差异的估计中的不确定性。本文旨在通过为旅行时间估算设置框架来解决这两个问题。在我们的框架中,基础道路网络表示为图。每个边缘都细分为多个较小的零件,以便自然地对附近的道路零件之间的统计相似性建模。依靠贝叶斯的方法,我们为联合每距离旅行时间分布构建了一个估计器,从而为我们提供了对估计值的不确定性量化。我们的机械依赖于建立限制定理,从而使最终的估计过程稳健,因为它实际上不假定任何分布属性。我们提出了一组广泛的数值实验,这些实验证明了在数据驱动的路线选择的背景下,估计过程的有效性以及分布估计的使用。

In route selection problems, the driver's personal preferences will determine whether she prefers a route with a travel time that has a relatively low mean and high variance over one that has relatively high mean and low variance. In practice, however, such risk aversion issues are often ignored, in that a route is selected based on a single-criterion Dijkstra-type algorithm. In addition, the routing decision typically does not take into account the uncertainty in the estimates of the travel time's mean and variance. This paper aims at resolving both issues by setting up a framework for travel time estimation. In our framework, the underlying road network is represented as a graph. Each edge is subdivided into multiple smaller pieces, so as to naturally model the statistical similarity between road pieces that are spatially nearby. Relying on a Bayesian approach, we construct an estimator for the joint per-edge travel time distribution, thus also providing us with an uncertainty quantification of our estimates. Our machinery relies on establishing limit theorems, making the resulting estimation procedure robust in the sense that it effectively does not assume any distributional properties. We present an extensive set of numerical experiments that demonstrate the validity of the estimation procedure and the use of the distributional estimates in the context of data-driven route selection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源