论文标题
部分可观测时空混沌系统的无模型预测
Predicting CO$_2$ Absorption in Ionic Liquids with Molecular Descriptors and Explainable Graph Neural Networks
论文作者
论文摘要
离子液体(ILS)为CO $ _2 $捕获和存储提供了有希望的解决方案,以减轻全球变暖。但是,从巨大的化学空间中识别和设计高容量的IL需要昂贵,详尽的模拟和实验。机器学习(ML)可以通过数据驱动的方式通过准确有效的属性预测来加速寻找理想的离子分子的过程。但是,现有的离子分子的描述符和ML模型遭受分子图结构的效率低下的适应性。此外,很少有作品研究了ML模型的解释性,以帮助了解可以指导高效离子分子设计的学习特征。在这项工作中,我们开发了基于指纹的ML模型和图形神经网络(GNN),以预测ILS中的CO $ _2 $吸收。指纹在特征提取阶段工作,而GNN在特征提取和模型预测阶段直接处理分子结构。我们表明,我们的方法通过达到高精度(0.0137,$ r^2 $ 0.9884)来优于以前的ML模型。此外,我们利用GNNS特征表示的优势,并开发了一种基于子结构的解释方法,该方法可深入了解IL分子中的每个化学片段如何有助于ML模型的CO $ _2 $吸收预测。我们还表明,我们的解释结果与ILS中Co $ _2 $吸收的理论反应机理的一些基础真理一致,这可以在将来就新颖有效的功能性ILS设计。
Ionic Liquids (ILs) provide a promising solution for CO$_2$ capture and storage to mitigate global warming. However, identifying and designing the high-capacity IL from the giant chemical space requires expensive, and exhaustive simulations and experiments. Machine learning (ML) can accelerate the process of searching for desirable ionic molecules through accurate and efficient property predictions in a data-driven manner. But existing descriptors and ML models for the ionic molecule suffer from the inefficient adaptation of molecular graph structure. Besides, few works have investigated the explainability of ML models to help understand the learned features that can guide the design of efficient ionic molecules. In this work, we develop both fingerprint-based ML models and Graph Neural Networks (GNNs) to predict the CO$_2$ absorption in ILs. Fingerprint works on graph structure at the feature extraction stage, while GNNs directly handle molecule structure in both the feature extraction and model prediction stage. We show that our method outperforms previous ML models by reaching a high accuracy (MAE of 0.0137, $R^2$ of 0.9884). Furthermore, we take the advantage of GNNs feature representation and develop a substructure-based explanation method that provides insight into how each chemical fragments within IL molecules contribute to the CO$_2$ absorption prediction of ML models. We also show that our explanation result agrees with some ground truth from the theoretical reaction mechanism of CO$_2$ absorption in ILs, which can advise on the design of novel and efficient functional ILs in the future.