论文标题

对分数Ornstein-uhlenbeck过程的最小二乘估计的改进的浆果界限

An Improved Berry-Esseen Bound of Least Squares Estimation for Fractional Ornstein-Uhlenbeck Processes

论文作者

Chen, Yong, Gu, Xiangmeng

论文摘要

本文的目的是双重的。首先,它提供了一个新颖的公式来计算Hilbert Space $ \ Mathcal {H} $与Hurst Parameter $ h \ in(0,\ frac12)$相关的有限变化函数的内部产品。该公式基于Lebesgue-Stieljes测量有限变化函数的一种分解以及Lebesgue-Stieljes测量的零件公式的集成。第二,作为公式的应用,我们探讨了作为$ t \ to \ indty $,是双变量函数正常平方的渐近线$ \ MATHCAL {H}^{\ ODOT 2} $(作为$ t $的函数),并改善贝里 - 埃塞恩类型的上限,以最少平方估计分数ornstein-uhlenbeck流程的漂移系数,并使用hurst参数$ h \ in(\ frac14,\ frac14,\ frac12)$。本文的渐近分析比HU,Nualart,Zhou(2019)的引理17的渐近分析要高得多,而改善的浆果 - 埃塞恩型上限是陈的定理1.1结果的最佳改进,李(2021)。作为副产品,给出了上述渐近分析的第二次应用,即,我们还显示了贝里 - 埃塞恩型上限,目的是对分数ornstein-uhlenbeck的漂移系数的矩估计,其中该方法与Sottinen,viititasaaari(2018(2018)中的命题4.1的命题4.1显而易见。

The aim of this paper is twofold. First, it offers a novel formula to calculate the inner product of the bounded variation function in the Hilbert space $\mathcal{H}$ associated with the fractional Brownian motion with Hurst parameter $H\in (0,\frac12)$. This formula is based on a kind of decomposition of the Lebesgue-Stieljes measure of the bounded variation function and the integration by parts formula of the Lebesgue-Stieljes measure. Second, as an application of the formula, we explore that as $T\to\infty$, the asymptotic line for the square of the norm of the bivariate function $f_T(t,s)=e^{-θ|t-s|}1_{\{0\leq s,t\leq T\}}$ in the symmetric tensor space $\mathcal{H}^{\odot 2}$ (as a function of $T$), and improve the Berry-Esséen type upper bound for the least squares estimation of the drift coefficient of the fractional Ornstein-Uhlenbeck processes with Hurst parameter $H\in (\frac14,\frac12)$. The asymptotic analysis of the present paper is much more subtle than that of Lemma 17 in Hu, Nualart, Zhou(2019) and the improved Berry-Esséen type upper bound is the best improvement of the result of Theorem 1.1 in Chen, Li (2021). As a by-product, a second application of the above asymptotic analysis is given, i.e., we also show the Berry-Esséen type upper bound for the moment estimation of the drift coefficient of the fractional Ornstein-Uhlenbeck processes where the method is obvious different to that of Proposition 4.1 in Sottinen, Viitasaari(2018).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源