论文标题

基于观察者的事件触发的一相Stefan问题的边界控制

Observer-based Event-triggered Boundary Control of the One-phase Stefan Problem

论文作者

Rathnayake, Bhathiya, Diagne, Mamadou

论文摘要

本文使用移动界面的位置和速度测量值为单相Stefan问题提供了基于观察者的事件触发的边界控制策略。无限维替代方法用于设计基础观察者和控制器。为了实现连续时间观察者控制器的事件触发的实现,提出了动态事件触发条件。触发条件决定了需要更新控件输入的时间。在两次事件之间,控制输入以\ textit {Zero-order-hold}方式应用。结果表明,两个触发实例之间的停留时间在下面均匀界定,不包括\ textit {zeno craveny}。在提出的事件触发的边界控制方法下,提供了闭环系统的适当性以及某些模型有效性条件。此外,使用Lyapunov方法,证明了闭环系统向设定点的全局指数融合。提供了一个模拟示例来说明理论结果。

This paper provides an observer-based event-triggered boundary control strategy for the one-phase Stefan problem using the position and velocity measurements of the moving interface. The infinite-dimensional backstepping approach is used to design the underlying observer and controller. For the event-triggered implementation of the continuous-time observer-based controller, a dynamic event triggering condition is proposed. The triggering condition determines the times at which the control input needs to be updated. In between events, the control input is applied in a \textit{Zero-Order-Hold} fashion. It is shown that the dwell-time between two triggering instances is uniformly bounded below excluding \textit{Zeno behavior}. Under the proposed event-triggered boundary control approach, the well-posedness of the closed-loop system along with certain model validity conditions is provided. Further, using Lyapunov approach, the global exponential convergence of the closed-loop system to the setpoint is proved. A simulation example is provided to illustrate the theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源