论文标题

部分可观测时空混沌系统的无模型预测

Topological Singularity Detection at Multiple Scales

论文作者

von Rohrscheidt, Julius, Rieck, Bastian

论文摘要

假设数据位于现代机器学习研究的主食。然而,最近的工作表明,现实世界数据表现出不同的非字母结构,即奇异性,这可能会导致错误的发现。因此,检测这种奇异性是插值和推理任务的前身至关重要的。我们通过开发一个拓扑框架来解决这个问题,该拓扑框架(i)量化局部固有维度,(ii)产生欧几合性评分,以评估沿多个尺度的点的“多种多样”。我们的方法确定了复杂空间的奇点,同时还捕获了图像数据中的奇异结构和局部几何复杂性。

The manifold hypothesis, which assumes that data lies on or close to an unknown manifold of low intrinsic dimension, is a staple of modern machine learning research. However, recent work has shown that real-world data exhibits distinct non-manifold structures, i.e. singularities, that can lead to erroneous findings. Detecting such singularities is therefore crucial as a precursor to interpolation and inference tasks. We address this issue by developing a topological framework that (i) quantifies the local intrinsic dimension, and (ii) yields a Euclidicity score for assessing the 'manifoldness' of a point along multiple scales. Our approach identifies singularities of complex spaces, while also capturing singular structures and local geometric complexity in image data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源