论文标题

部分可观测时空混沌系统的无模型预测

Paraconsistent and Paracomplete Zermelo-Fraenkel Set Theory

论文作者

Khomskii, Yurii, Oddsson, Hrafn Valtýr

论文摘要

我们在四个价值的副派和偏见的逻辑中介绍了一种新的对套装理论的处理,即,命题可以是真实和错误,既不是真实也不是错误的逻辑。我们的方法与paracensistent set理论的先前研究有很大的不同,该理论几乎完全是出于避免罗素的悖论并实现幼稚理解的愿望。取而代之的是,我们优先设置一个具有明确的非经典集体本体的系统,该系统可用于非正式地对不完整和不一致的现象进行非正式推理,并且与ZFC足够相似,以便能够开发有趣的数学。 我们提出了一个公理系统BZFC,该系统通过分析ZFC轴并以仔细的方式将其转化为四值设置,从而避免了其他尝试的形式化遇到的许多障碍。我们引入了反古典性公理,假设存在非古典套件,并证明了一个令人惊讶的结果,表明单个非经典套件的存在足以产生任何其他类型的非经典套件。 我们的理论与ZFC自然而然地解释了,并提供了一种令人满意的观点,在该观点中,非古典集可以将其视为经典的观点,其自然延伸方式与非曲折的彼得·阿克塞尔(Peter Aczel)相似。 最后,我们提供了一个关于Tarski语义的有趣应用程序,表明对满意度关系的经典定义产生了逻辑,可以准确反映元理论中的非经典性。

We present a novel treatment of set theory in a four-valued paraconsistent and paracomplete logic, i.e., a logic in which propositions can be both true and false, and neither true nor false. Our approach is a significant departure from previous research in paraconsistent set theory, which has almost exclusively been motivated by a desire to avoid Russell's paradox and fulfil naive comprehension. Instead, we prioritise setting up a system with a clear ontology of non-classical sets, which can be used to reason informally about incomplete and inconsistent phenomena, and is sufficiently similar to ZFC to enable the development of interesting mathematics. We propose an axiomatic system BZFC, obtained by analysing the ZFC-axioms and translating them to a four-valued setting in a careful manner, avoiding many of the obstacles encountered by other attempted formalizations. We introduce the anti-classicality axiom postulating the existence of non-classical sets, and prove a surprising results stating that the existence of a single non-classical set is sufficient to produce any other type of non-classical set. Our theory is naturally bi-interpretable with ZFC, and provides a philosophically satisfying view in which non-classical sets can be seen as a natural extension of classical ones, in a similar way to the non-well-founded sets of Peter Aczel. Finally, we provide an interesting application concerning Tarski semantics, showing that the classical definition of the satisfaction relation yields a logic precisely reflecting the non-classicality in the meta-theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源