论文标题

广义自由领域的共同信息

Mutual Information of Generalized Free Fields

论文作者

Benedetti, Valentin, Casini, Horacio, Martinez, Pedro J.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study generalized free fields (GFF) from the point of view of information measures. We first review conformal GFF, their holographic representation, and the ambiguities in the assignation of algebras to regions that arise in these theories. Then we study the mutual information (MI) in several geometric configurations. The MI displays unusual features at the short distance limit: a leading volume term rather than an area term, and a logarithmic term in any dimensions rather than only for even dimensions as in ordinary CFT's. We find the dependence of some subleading terms on the conformal dimension $Δ$ of the GFF. We study the long distance limit of the MI for regions with boundary in the null cone. The pinching limit of these surfaces show the GFF behaves as an interacting model from the MI point of view. The pinching exponents depend on the choice of algebra. The entanglement wedge algebra choice allows these models to ``fake'' causality, giving results consistent with its role in the description of large $N$ models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源