论文标题
神经不平衡的最佳运输通过循环一致的半耦合
Neural Unbalanced Optimal Transport via Cycle-Consistent Semi-Couplings
论文作者
论文摘要
比较在不同时间点所采集的分布或种群的未配对样本是许多应用领域的基本任务,在许多应用领域中,测量人群具有破坏性,并且在同一样本上无法反复进行,例如单细胞生物学。最佳运输(OT)可以通过学习未配对数据的分布之间的样品的最佳耦合来解决这一挑战。但是,通常的OT表述假设质量保存,在测量之间种群大小变化(例如细胞增殖或死亡)的不平衡情况下,质量侵犯了质量。在这项工作中,我们介绍了Nubot,这是一种神经不平衡的OT公式,依靠半偶联的形式主义来解释质量的创造和破坏。为了估计这种半耦合并概括样本外,我们根据神经最佳传输图得出有效的参数化,并通过循环一致的训练程序提出了一种新颖的算法方案。我们将我们的方法应用于预测多种癌细胞系对各种药物的异质反应的具有挑战性的任务,我们观察到,通过准确地对细胞增殖和死亡进行建模,我们的方法对先前神经最佳运输方法产生了显着改善。
Comparing unpaired samples of a distribution or population taken at different points in time is a fundamental task in many application domains where measuring populations is destructive and cannot be done repeatedly on the same sample, such as in single-cell biology. Optimal transport (OT) can solve this challenge by learning an optimal coupling of samples across distributions from unpaired data. However, the usual formulation of OT assumes conservation of mass, which is violated in unbalanced scenarios in which the population size changes (e.g., cell proliferation or death) between measurements. In this work, we introduce NubOT, a neural unbalanced OT formulation that relies on the formalism of semi-couplings to account for creation and destruction of mass. To estimate such semi-couplings and generalize out-of-sample, we derive an efficient parameterization based on neural optimal transport maps and propose a novel algorithmic scheme through a cycle-consistent training procedure. We apply our method to the challenging task of forecasting heterogeneous responses of multiple cancer cell lines to various drugs, where we observe that by accurately modeling cell proliferation and death, our method yields notable improvements over previous neural optimal transport methods.