论文标题
$φ$ -DVAE:无组织数据同化物理学的动力变异自动编码器
$Φ$-DVAE: Physics-Informed Dynamical Variational Autoencoders for Unstructured Data Assimilation
论文作者
论文摘要
将非结构化数据纳入物理模型是一个具有挑战性的问题,它在数据同化中出现。传统方法集中在定义明确的观察算子上,其功能形式通常被认为是已知的。这样可以防止这些方法在配置中实现一致的模型数据合成,在配置中,从数据空间到模型空间的映射尚不清楚。为了解决这些缺点,在本文中,我们开发了一个具有物理信息的动力学变异自动编码器($φ$ -DVAE),将各种数据流嵌入到由微分方程描述的随时间不断发展的物理系统中。我们的方法将潜在状态空间模型和VAE的标准,可能是非线性的过滤器结合在一起,将非结构化数据吸收到潜在的动力系统中。非结构化数据(在我们的示例系统中)以视频数据和速度字段测量的形式出现,但是该方法可以适当地通用,以允许任意未知的观察器。差异贝叶斯框架用于编码,潜在状态和未知系统参数的联合估计。为了证明该方法,我们提供了Lorenz-63普通微分方程的案例研究,而对流和Korteweg-de Vries部分微分方程。通过合成数据,我们的结果表明,$φ$ -DVAE提供了与标准方法竞争的数据有效的编码方法。通过不确定性定量恢复未知参数,并准确预测了看不见的数据。
Incorporating unstructured data into physical models is a challenging problem that is emerging in data assimilation. Traditional approaches focus on well-defined observation operators whose functional forms are typically assumed to be known. This prevents these methods from achieving a consistent model-data synthesis in configurations where the mapping from data-space to model-space is unknown. To address these shortcomings, in this paper we develop a physics-informed dynamical variational autoencoder ($Φ$-DVAE) to embed diverse data streams into time-evolving physical systems described by differential equations. Our approach combines a standard, possibly nonlinear, filter for the latent state-space model and a VAE, to assimilate the unstructured data into the latent dynamical system. Unstructured data, in our example systems, comes in the form of video data and velocity field measurements, however the methodology is suitably generic to allow for arbitrary unknown observation operators. A variational Bayesian framework is used for the joint estimation of the encoding, latent states, and unknown system parameters. To demonstrate the method, we provide case studies with the Lorenz-63 ordinary differential equation, and the advection and Korteweg-de Vries partial differential equations. Our results, with synthetic data, show that $Φ$-DVAE provides a data efficient dynamics encoding methodology which is competitive with standard approaches. Unknown parameters are recovered with uncertainty quantification, and unseen data are accurately predicted.