论文标题

纯电路:PPAD的严格不适当性

Pure-Circuit: Tight Inapproximability for PPAD

论文作者

Deligkas, Argyrios, Fearnley, John, Hollender, Alexandros, Melissourgos, Themistoklis

论文摘要

$ \ varepsilon $ generalized-circuit($ \ varepsilon $ gcircuit)问题出现了用于显示PPAD中不合时宜的当前最新方法。鲁宾斯坦(Rubinstein,2018年)表明,存在$ \ varepsilon $ -gcircuit $ \ varepsilon $的小未知常数$ \ varepsilon $是ppad-hard,随后的工作通过使用$ \ varepsilon $ gccircuit作为中间问题显示了PPAD中其他问题的硬度结果。 我们引入了Pure-Circuit,这是PPAD的一个新的中间问题,可以将其视为$ \ varepsilon $ -GCircuit,将其推至限制为$ \ varepsilon \ Rightarrow 1 $,我们表明问题是PPAD-COMPLETE。然后,我们证明$ \ varepsilon $ -gcircuit通过减少Pure-Circuit的减少而对所有$ \ Varepsilon <0.1 $都是ppad-hard,从而加强了所有以前的工作,这些工作将GCircuit用作中间问题从存在的稳定政权到大型稳定机构。 我们表明,可以通过直接从纯电路降低来得出更强的不Xibimibility结果。特别是,我们证明了在图形游戏中计算近似NASH平衡和近似良好支持的NASH平衡的严格的不可Ximibimitibility结果,用于在polymatrix游戏中找到近似良好的纳什均衡状态,并在阈值中找到近似于平衡的nash平衡。

The current state-of-the-art methods for showing inapproximability in PPAD arise from the $\varepsilon$-Generalized-Circuit ($\varepsilon$-GCircuit) problem. Rubinstein (2018) showed that there exists a small unknown constant $\varepsilon$ for which $\varepsilon$-GCircuit is PPAD-hard, and subsequent work has shown hardness results for other problems in PPAD by using $\varepsilon$-GCircuit as an intermediate problem. We introduce Pure-Circuit, a new intermediate problem for PPAD, which can be thought of as $\varepsilon$-GCircuit pushed to the limit as $\varepsilon \rightarrow 1$, and we show that the problem is PPAD-complete. We then prove that $\varepsilon$-GCircuit is PPAD-hard for all $\varepsilon < 0.1$ by a reduction from Pure-Circuit, and thus strengthen all prior work that has used GCircuit as an intermediate problem from the existential-constant regime to the large-constant regime. We show that stronger inapproximability results can be derived by reducing directly from Pure-Circuit. In particular, we prove tight inapproximability results for computing approximate Nash equilibria and approximate well-supported Nash equilibria in graphical games, for finding approximate well-supported Nash equilibria in polymatrix games, and for finding approximate equilibria in threshold games.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源