论文标题

对Zassenhaus猜想的简单模块化谎言代数的反例

Counterexamples to the Zassenhaus conjecture on simple modular Lie algebras

论文作者

Burde, Dietrich, Moens, Wolfgang, Páez-Guillán, Pilar

论文摘要

我们为Zassenhaus的猜想提供了无限的反例,该家族对简单模块化谎言代数的外部导数代数的溶解性。实际上,我们表明,尺寸的简单模块化谎言代数$ h(2;(1,n))^{(2)} $ dimension $ 3^{n+1} -2在特征$ p = 3 $中没有溶解的外部导数代数,用于所有$ n \ ge 1 $。对于$ n = 1 $,这将恢复$ \ mathfrak {psl} _3(f)$的已知反例。我们表明,外部推导代数为$ h(2;(1,n))^{(2)} $是$(\ Mathfrak {\ mathfrak {sl} _2(f)\ ltimes v(2))\ oplus f^{n-1} $的$ v(2)$是$ v(2)$的自然代表。我们还研究了特征三的其他已知的简单谎言代数,但它们没有产生新的反例。

We provide an infinite family of counterexamples to the conjecture of Zassenhaus on the solvability of the outer derivation algebra of a simple modular Lie algebra. In fact, we show that the simple modular Lie algebras $H(2;(1,n))^{(2)}$ of dimension $3^{n+1}-2$ in characteristic $p=3$ do not have a solvable outer derivation algebra for all $n\ge 1$. For $n=1$ this recovers the known counterexample of $\mathfrak{psl}_3(F)$. We show that the outer derivation algebra of $H(2;(1,n))^{(2)}$ is isomorphic to $(\mathfrak{sl}_2(F)\ltimes V(2))\oplus F^{n-1}$, where $V(2)$ is the natural representation of $\mathfrak{sl}_2(F)$. We also study other known simple Lie algebras in characteristic three, but they do not yield a new counterexample.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源