论文标题

双层光学晶格中具有典型原子的可调对称性保护的高阶拓扑状态

Tunable symmetry-protected higher-order topological states with fermionic atoms in bilayer optical lattices

论文作者

Lei, Zhoutao, Li, Linhu, Deng, Yuangang

论文摘要

具有宽大的散装能带和外在拓扑保护边界状态的高阶拓扑状态,至少二维低于该体积,已经显着开辟了一个新的观点,可以理解拓扑量子问题。在这里,我们建议生成二维拓扑边界状态,以实现被困在双层光学晶格中的超速原子的合成磁通量,其中包括Chern绝缘子,DIRAC半学和二阶拓扑阶段(SOTP),并通过两次photon Dewuning和有效的Zeeman转移的互动层。这些观察到的拓扑阶段可以很好地表征大体,威尔逊环光谱的能量差距以及系统较高的对称点处的自旋纹理。我们表明SOTP展示了一对$ 0 $ D的边界状态。而狄拉克半学和奇恩绝缘子的阶段则支持传统的$ 1 $ d边界状态,这是由于散装 - 边界对应的原理。令人惊讶的是,狄拉克半法和SOTP的出现边界状态在$ \ cal p t $ -smmetry和手性mirror对称性($ \ MATHCAL {\ wideTilde {m}}_α$)上分别受到。特别是,SOTP的$ 0 $ D角状态与现有$ \ Mathcal {\ widetilde {m}}_α$ - s-Symmetry相关的位置可以通过调谐磁通量来高度操纵。我们的方案为新兴的外来拓扑边界状态提供了一个平台,这可能有助于研究超速原子气体中高阶拓扑阶段。

Higher-order topological states that possess gapped bulk energy bands and exotic topologically protected boundary states with at least two dimension lower than the bulk have significantly opened a new perspective for understanding of topological quantum matters. Here, we propose to generate two-dimensional topological boundary states for implementing synthetic magnetic flux of ultracold atoms trapped in bilayer optical lattices, which includes Chern insulator, Dirac semimetals, and second-order topological phase (SOTP) by the interplay of the two-photon detuning and effective Zeeman shift. These observed topological phases can be well characterized by the energy gap of bulk, Wilson loop spectra, and the spin textures at the higher symmetric points of system. We show that the SOTP exhibits a pair of $0$D boundary states. While the phases of Dirac semimetals and Chern insulator support the conventional $1$D boundary states due to the principle of bulk-boundary correspondence. Strikingly, the emerged boundary states for Dirac semimetals and SOTP are topologically protected by $\cal P T$-symmetry and chiral-mirror symmetry ($\mathcal{\widetilde{M}}_α$), respectively. In particular, the location of $0$D corner states for SOTP which are associated with existing $\mathcal{\widetilde{M}}_α$-symmetry can be highly manipulated by tuning magnetic flux. Our scheme herein provides a platform for emerging exotic topological boundary states, which may facilitate the study of higher-order topological phases in ultracold atomic gases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源