论文标题

天气预报的时空预测技术的案例研究

A case study of spatiotemporal forecasting techniques for weather forecasting

论文作者

Sofi, Shakir Showkat, Oseledets, Ivan

论文摘要

大多数现实世界过程都是时空的,它们产生的数据表现出空间和时间进化。天气是该域中最重要的过程之一,天气预报已成为我们日常工作的关键部分。天气数据分析被认为是最复杂,最具挑战性的任务。尽管目前的数值天气预测模型是最新的,但它们是资源密集型且耗时的。许多研究提出了基于时间序列的模型,作为数值预测的可行替代方法。时间序列分析领域的最新研究表明,有关基于状态空间的模型(白框)以及最近的机器学习和基于Deep Never Network网络模型(黑匣子)的整合(黑匣子)的使用,特别是在使用基于状态空间的模型(白框)方面的显着进步。此类模型最著名的例子是RNN和变形金刚。这些模型在时间序列分析领域表现出了显着的结果,并证明了在建模时间相关性中的有效性。在时空过程中捕获时空相关性和空间相关性至关重要,因为附近位置的值和时间会影响特定点时时空过程的值。这份独立的论文探讨了各种区域数据驱动的天气预报方法,即对多个纬度长度点(矩阵形空间网格)进行预测以捕获时空相关性。结果表明,时空预测模型降低了计算成本,同时提高了准确性。特别是,提出的张量训练列车动态模式分解模型具有与最新模型相当的精度,而无需训练。我们提供令人信服的数值实验,以表明所提出的方法是实用的。

The majority of real-world processes are spatiotemporal, and the data generated by them exhibits both spatial and temporal evolution. Weather is one of the most essential processes in this domain, and weather forecasting has become a crucial part of our daily routine. Weather data analysis is considered the most complex and challenging task. Although numerical weather prediction models are currently state-of-the-art, they are resource-intensive and time-consuming. Numerous studies have proposed time series-based models as a viable alternative to numerical forecasts. Recent research in the area of time series analysis indicates significant advancements, particularly regarding the use of state-space-based models (white box) and, more recently, the integration of machine learning and deep neural network-based models (black box). The most famous examples of such models are RNNs and transformers. These models have demonstrated remarkable results in the field of time-series analysis and have demonstrated effectiveness in modelling temporal correlations. It is crucial to capture both temporal and spatial correlations for a spatiotemporal process, as the values at nearby locations and time affect the values of a spatiotemporal process at a specific point. This self-contained paper explores various regional data-driven weather forecasting methods, i.e., forecasting over multiple latitude-longitude points (matrix-shaped spatial grid) to capture spatiotemporal correlations. The results showed that spatiotemporal prediction models reduced computational costs while improving accuracy. In particular, the proposed tensor train dynamic mode decomposition-based forecasting model has comparable accuracy to the state-of-the-art models without the need for training. We provide convincing numerical experiments to show that the proposed approach is practical.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源