论文标题
来自对称原理的轨道活性狄拉克材料
Orbital-Active Dirac Materials from the Symmetry Principle
论文作者
论文摘要
从石墨烯开始的狄拉克材料在过去十年中引起了极大的研究兴趣。我们没有像石墨烯那样专注于$ p_z $轨道,而是进一步发展并研究轨道活性的狄拉克材料,其中轨道自由度转换为晶格群的二维不可减至表示。轨道活性狄拉克材料的实例发生在一系列的系统中,包括过渡金属氧化物异质结构,过渡金属二烷核苷单单层,德国烯,Stanene和光学晶格。根据对称原理将不同的系统统一。轨道活性狄拉克材料的带结构以$ k(k')$和二次带触摸点为$γ$的圆锥锥体,无论轨道自由度的起源如何。在强大的各向异性限制中,即,当$π$键入可以忽略时,由于破坏性干扰而出现平坦带。这些特征使轨道活性狄拉克材料成为更广泛的游乐场,以寻找异国情调的物质状态,例如狄拉克半金属,铁磁剂,wigner结晶,量子旋转厅州和量子异常的霍尔州。
Dirac materials, starting with graphene, have drawn tremendous research interest in the past decade. Instead of focusing on the $p_z$ orbital as in graphene, we move a step further and study orbital-active Dirac materials, where the orbital degrees of freedom transform as a two-dimensional irreducible representation of the lattice point group. Examples of orbital-active Dirac materials occur in a broad class of systems, including transition-metal-oxide heterostructures, transition-metal dichalcogenide monolayers, germanene, stanene, and optical lattices. Different systems are unified based on symmetry principles. The band structure of orbital-active Dirac materials features Dirac cones at $K(K')$ and quadratic band touching points at $Γ$, regardless of the origin of the orbital degrees of freedom. In the strong anisotropy limit, i.e., when the $π$-bonding can be neglected, flat bands appear due to the destructive interference. These features make orbital-active Dirac materials an even wider playground for searching for exotic states of matter, such as the Dirac semi-metal, ferromagnetism, Wigner crystallization, quantum spin Hall state, and quantum anomalous Hall state.