论文标题

NVRADARNET:自动驾驶的实时雷达障碍物和自由空间检测

NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for Autonomous Driving

论文作者

Popov, Alexander, Gebhardt, Patrik, Chen, Ke, Oldja, Ryan, Lee, Heeseok, Murray, Shane, Bhargava, Ruchi, Smolyanskiy, Nikolai

论文摘要

检测障碍对于安全有效的自动驾驶至关重要。为此,我们提出了NVRadarnet,这是一种深层神经网络(DNN),该网络(DNN)使用汽车雷达传感器检测动态障碍物和可驱动的自由空间。该网络利用从多个雷达传感器的时间积累的数据来检测动态障碍,并在自上而下的鸟类视图(BEV)中计算其方向。该网络还可以回归可驱动的自由空间,以检测未分类的障碍。我们的DNN是第一个使用稀疏雷达信号的同类DNN,以实时从雷达数据实时执行障碍物和自由空间检测。在实际的自动驾驶场景中,该网络已成功地用于我们的自动驾驶汽车。该网络在嵌入式GPU上运行的速度比实时时间快,并且在地理区域显示良好的概括。

Detecting obstacles is crucial for safe and efficient autonomous driving. To this end, we present NVRadarNet, a deep neural network (DNN) that detects dynamic obstacles and drivable free space using automotive RADAR sensors. The network utilizes temporally accumulated data from multiple RADAR sensors to detect dynamic obstacles and compute their orientation in a top-down bird's-eye view (BEV). The network also regresses drivable free space to detect unclassified obstacles. Our DNN is the first of its kind to utilize sparse RADAR signals in order to perform obstacle and free space detection in real time from RADAR data only. The network has been successfully used for perception on our autonomous vehicles in real self-driving scenarios. The network runs faster than real time on an embedded GPU and shows good generalization across geographic regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源