论文标题
量子相处理及其在估计阶段和熵中的应用
Quantum Phase Processing and its Applications in Estimating Phase and Entropies
论文作者
论文摘要
量子计算可以在解决许多问题方面提供加速,因为量子系统的演变是由单一操作员在指数较大的希尔伯特空间中描述的。这样的统一操作员会改变其本征态的阶段,并使量子算法与经典的算法根本不同。基于这个量子计算的独特原理,我们开发了一种新的算法工具箱“量子相处理”,该工具箱可以将任意的三角转换直接应用于单位运算符的特征强调。简单地构建了量子相处理电路,由单量子旋转和受控非军事组成,通常仅使用一个Ancilla量子量。除了相变的能力外,量子相处理尤其可以通过简单地测量Ancilla值来提取量子系统的特征性信息,从而自然地与间接测量兼容。量子相处理补充了另一个称为量子奇异值转换的强大框架,并导致更直观,更有效的量子算法来解决特别相关的问题。作为一个值得注意的应用,我们提出了一种新的量子相估计算法,而没有量子傅立叶变换,这需要最少的Ancilla Qubits,并匹配到目前为止的最佳性能。我们通过研究在哈密顿模拟,纠缠光谱和量子熵估计中的大量应用来进一步利用方法的功能,证明了几乎所有情况的改进或最佳性。
Quantum computing can provide speedups in solving many problems as the evolution of a quantum system is described by a unitary operator in an exponentially large Hilbert space. Such unitary operators change the phase of their eigenstates and make quantum algorithms fundamentally different from their classical counterparts. Based on this unique principle of quantum computing, we develop a new algorithmic toolbox "quantum phase processing" that can directly apply arbitrary trigonometric transformations to eigenphases of a unitary operator. The quantum phase processing circuit is constructed simply, consisting of single-qubit rotations and controlled-unitaries, typically using only one ancilla qubit. Besides the capability of phase transformation, quantum phase processing in particular can extract the eigen-information of quantum systems by simply measuring the ancilla qubit, making it naturally compatible with indirect measurement. Quantum phase processing complements another powerful framework known as quantum singular value transformation and leads to more intuitive and efficient quantum algorithms for solving problems that are particularly phase-related. As a notable application, we propose a new quantum phase estimation algorithm without quantum Fourier transform, which requires the fewest ancilla qubits and matches the best performance so far. We further exploit the power of our method by investigating a plethora of applications in Hamiltonian simulation, entanglement spectroscopy and quantum entropies estimation, demonstrating improvements or optimality for almost all cases.