论文标题
部分可观测时空混沌系统的无模型预测
Solar Flare Index Prediction Using SDO/HMI Vector Magnetic Data Products with Statistical and Machine Learning Methods
论文作者
论文摘要
太阳耀斑,尤其是M级和X级耀斑,通常与冠状质量弹出(CMES)有关。它们是太空天气影响的最重要来源,可能会严重影响近地环境。因此,必须预测耀斑(尤其是X级),以减轻它们的破坏性和危险后果。在这里,我们介绍了几种统计和机器学习方法,以预测AR的耀斑指数(FI),这些方法通过考虑到一定时间间隔内不同类耀斑的数量来量化AR的耀斑生产力。具体而言,我们的样本包括2010年5月至2017年12月在太阳能磁盘上出现的563次AR。由太空天气HMI活性区域(Sharp)提供的25个磁参数(SHARP)在太阳能动力学观测局(SDO)上提供了太阳能动力学(SDO)上的冠状动脉磁成像(HMI),将冠状电磁能由Proxy和Projectort and the sys ans sy the Prodivorts中供您使用。我们研究了这些尖锐的参数与ARS的FI与机器学习算法(样条回归)和重采样方法(合成少数群体过度采样技术,用于使用高斯噪声回归的合成少数群体过度抽样技术,由Smogn简短)。基于既定关系,我们能够在接下来的1天期间预测给定AR的FIS值。与其他4种流行的机器学习算法相比,我们的方法提高了FI预测的准确性,尤其是对于大型FI。此外,我们根据由9种不同的机器学习方法渲染的等级计算出的尖锐参数的重要性。
Solar flares, especially the M- and X-class flares, are often associated with coronal mass ejections (CMEs). They are the most important sources of space weather effects, that can severely impact the near-Earth environment. Thus it is essential to forecast flares (especially the M-and X-class ones) to mitigate their destructive and hazardous consequences. Here, we introduce several statistical and Machine Learning approaches to the prediction of the AR's Flare Index (FI) that quantifies the flare productivity of an AR by taking into account the numbers of different class flares within a certain time interval. Specifically, our sample includes 563 ARs appeared on solar disk from May 2010 to Dec 2017. The 25 magnetic parameters, provided by the Space-weather HMI Active Region Patches (SHARP) from Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO), characterize coronal magnetic energy stored in ARs by proxy and are used as the predictors. We investigate the relationship between these SHARP parameters and the FI of ARs with a machine-learning algorithm (spline regression) and the resampling method (Synthetic Minority Over-Sampling Technique for Regression with Gaussian Noise, short by SMOGN). Based on the established relationship, we are able to predict the value of FIs for a given AR within the next 1-day period. Compared with other 4 popular machine learning algorithms, our methods improve the accuracy of FI prediction, especially for large FI. In addition, we sort the importance of SHARP parameters by Borda Count method calculated from the ranks that are rendered by 9 different machine learning methods.