论文标题
聚类引起的生成不完整的图像文本聚类(CIGIT-C)
Clustering-Induced Generative Incomplete Image-Text Clustering (CIGIT-C)
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The target of image-text clustering (ITC) is to find correct clusters by integrating complementary and consistent information of multi-modalities for these heterogeneous samples. However, the majority of current studies analyse ITC on the ideal premise that the samples in every modality are complete. This presumption, however, is not always valid in real-world situations. The missing data issue degenerates the image-text feature learning performance and will finally affect the generalization abilities in ITC tasks. Although a series of methods have been proposed to address this incomplete image text clustering issue (IITC), the following problems still exist: 1) most existing methods hardly consider the distinct gap between heterogeneous feature domains. 2) For missing data, the representations generated by existing methods are rarely guaranteed to suit clustering tasks. 3) Existing methods do not tap into the latent connections both inter and intra modalities. In this paper, we propose a Clustering-Induced Generative Incomplete Image-Text Clustering(CIGIT-C) network to address the challenges above. More specifically, we first use modality-specific encoders to map original features to more distinctive subspaces. The latent connections between intra and inter-modalities are thoroughly explored by using the adversarial generating network to produce one modality conditional on the other modality. Finally, we update the corresponding modalityspecific encoders using two KL divergence losses. Experiment results on public image-text datasets demonstrated that the suggested method outperforms and is more effective in the IITC job.