论文标题

部分可观测时空混沌系统的无模型预测

Stochastic Control of a SIR Model with Non-linear Incidence Rate Through Euclidean Path Integral

论文作者

Pramanik, Paramahansa

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This paper utilizes a stochastic Susceptible-Infected-recovered (SIR) model with a non-linear incidence rate to perform a detailed mathematical study of optimal lock-down intensity and vaccination rate under the COVID-19 pandemic environment. We use a Feynman-type path integral control approach to determine a Fokker-Plank type equation of this system. Since we assume the availability of information on the COVID-19 pandemic is complete and perfect, we can show a unique fixed point. A non-linear incidence rate is used because, it can be raised from saturation effects that if the proportion of infected agents is very high so that exposure to the pandemic is inevitable, then the transmission rate responds slower than linearity to the increase in the number of infections. The simulation study shows that with higher diffusion coefficients susceptible and recovery curves keep the downward trends while the infection curve becomes ergodic. Finally, we perform a data analysis using UK data at the beginning of 2021 and compare it with our theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源