论文标题

Sauron U-NET:通过过滤器修剪在医疗图像分割中简单自动冗余消除

Sauron U-Net: Simple automated redundancy elimination in medical image segmentation via filter pruning

论文作者

Valverde, Juan Miguel, Shatillo, Artem, Tohka, Jussi

论文摘要

我们介绍了Sauron,这是一种过滤器修剪方法,它消除了卷积神经网络(CNN)的冗余特征图。 Sauron通过降低特征映射之间的距离,与损失函数共同优化,它与损耗函数共同优化,该术语在每个卷积层上促进图中的映射聚类。然后,Sauron通过使用自动调整的层特异性阈值来消除与冗余特征图相对应的过滤器。与大多数过滤器修剪方法不同,Sauron需要对典型的神经网络优化的最小变化,因为它将其修剪和优化CNN,这反过来又可以随着时间的推移加速优化。此外,与其他基于群集的方法不同,用户无需提前指定簇数,这是难以调整的超参数。我们在四个医学图像分割任务上评估了Sauron和五种最先进的过滤器修剪方法。这是一个很少关注过滤修剪的领域,但是对于本地部署来说,较小的CNN模型是可取的,从而减轻与基于云的解决方案相关的隐私问题。 Sauron是唯一可实现模型大小超过90%的方法,而不会大大恶化性能。总体而言,Sauron还达到了有和没有GPU的机器中推理时间最快的模型。最后,我们通过实验表明,用Sauron修剪的模型的特征图是高度可解释的,这对于医疗图像分割至关重要。

We introduce Sauron, a filter pruning method that eliminates redundant feature maps of convolutional neural networks (CNNs). Sauron optimizes, jointly with the loss function, a regularization term that promotes feature maps clustering at each convolutional layer by reducing the distance between feature maps. Sauron then eliminates the filters corresponding to the redundant feature maps by using automatically adjusted layer-specific thresholds. Unlike most filter pruning methods, Sauron requires minimal changes to typical neural network optimization because it prunes and optimizes CNNs jointly, which, in turn, accelerates the optimization over time. Moreover, unlike with other cluster-based approaches, the user does not need to specify the number of clusters in advance, a hyperparameter that is difficult to tune. We evaluated Sauron and five state-of-the-art filter pruning methods on four medical image segmentation tasks. This is an area where little attention has been paid to filter pruning, but where smaller CNN models are desirable for local deployment, mitigating privacy concerns associated with cloud-based solutions. Sauron was the only method that achieved a reduction in model size of over 90% without deteriorating substantially the performance. Sauron also achieved, overall, the fastest models at inference time in machines with and without GPUs. Finally, we show through experiments that the feature maps of models pruned with Sauron are highly interpretable, which is essential for medical image segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源