论文标题
Pierre螺旋钻天文台的MUON测量
Muon measurements at the Pierre Auger Observatory
论文作者
论文摘要
Pierre Auger天文台是观察到超高能量宇宙射线(UHECRS)(超过$ 10^{17} $ eV的能量)的世界上最大的检测器。它由荧光检测器(FD)和称为表面检测器(SD)的粒子探测器组成。观察天文台广泛的空气淋浴可用于探测高能量,在运动和能量区域的高能相互作用,无法在人造加速器上实验并测量淋浴的muon成分。由不同的初选引起的空气淋浴具有不同的若子含量。随着主要宇宙射线颗粒质量的增加,预计相应的空气淋浴中的哑光含量也应增加。从皮埃尔螺旋钻天文台和其他实验获得的最新结果表明,与数据相比,所有淋浴模拟都低估了淋浴中的隆隆声数。这是所谓的妈妈赤字。在本文中,我们简要回顾了MUON测量结果,并更详细地介绍了有关MUON数量波动的最新结果。这些结果为空气淋浴模拟中若子不足的起源提供了新的见解,并限制了超高能量下的Hadroonic相互作用的模型。通过表面检测器的当前设计,也很难可靠地将MUON对SD信号的贡献与光子,电子和正电子的贡献分开。因此,我们还提出了一种使用复发神经网络记录的信号时间迹线的灵恩分量的新方法。此类算法与升级的Pierre Auger天文台收集的未来数据的组合将是向前迈出的一步,因为我们很可能会逐个事件实现质量估算的前所未有的分辨率。
The Pierre Auger Observatory is the world's largest detector for observation of ultra-high-energy cosmic rays (UHECRs) (above the energy of $10^{17}$ eV). It consists of a Fluorescence Detector (FD) and an array of particle detectors known as the Surface Detector (SD). Observations of extensive air showers by the Observatory can be used to probe hadronic interactions at high energy, in a kinematic and energy region inaccessible to experiments at man-made accelerators and to measure the muon component of the shower. Air showers induced by different primaries have different muon contents. With increasing mass of the primary cosmic ray particle, it is expected that the muon content in the corresponding air showers should also increase. Recent results obtained from the Pierre Auger Observatory and other experiments indicate that all the shower simulations underestimate the number of muons in the showers compared to the data. This is the so-called muon deficit. In this paper we briefly review the muon measurements, and present in more detail recent results on fluctuations in the muon number. These results provide new insights into the origin of the muon deficit in air shower simulations and constrain the models of hadronic interactions at ultrahigh energies. With the current design of the surface detectors it is also difficult to reliably separate the contributions of muons to the SD signal from the contributions of photons, electrons, and positrons. Therefore, we also present a new method to extract the muon component of the signal time traces recorded by each SD station using recurrent neural networks. The combination of such algorithms, with the future data collected by the upgraded Pierre Auger Observatory, will be a major step forward, as we are likely to achieve an unprecedented resolution in mass estimation on an event-by-event basis.