论文标题
通过截短肿瘤轨迹在开放量子旋转晶格中的量子和经典相关性
Quantum and classical correlations in open quantum-spin lattices via truncated-cumulant trajectories
论文作者
论文摘要
随着耗散系统的实验控制进展及其技术利用的最新进展,对Liouvillian开放量子系统中量子多体物理学的研究变得越来越重要。开放量子系统中的一个核心问题涉及量子相关性的命运,以及通过在汉密尔顿动力学与偶数与浴缸之间进行竞争来控制它们的可能性。从理论的角度来看,这样一个问题是具有挑战性的,因为忠实地考虑量子相关性的数值方法要么依赖于确切的对角度化,因此可以极大地限制可以治疗的大小。或在量子相关性范围或强度上的近似值,与对密度矩阵的特定ANSATZ的选择有关。在这项工作中,我们提出了一种新方法,以基于随机量子轨迹来处理开放式量子晶格,以解决开放系统动力学的解决方案。沿着每个轨迹,假设$ k $超过$ k_c $的$ k $的多变量$ k $ -th订单累计消失,则将多点旋转旋转相关器方程式运动方程式截断为给定有限订单。这允许跟踪量子自旋相关性的演变,直到所有长度尺度的订单$ k_c $。我们在耗散2d XYZ晶格的相变的范式情况下验证了这种方法,但会受到自发衰变的影响。我们令人信服地评估了从磁磁到铁磁的稳态相变的存在,并在增加了哈密顿偶联之一后返回顺磁性;以及他们古典的本质。此外,该方法使我们能够在耗散临界点附近显示出显着的量子相关性,并揭示出旋转挤压的存在,这是与量子Fisher信息的紧密下限。
The study of quantum many-body physics in Liouvillian open quantum systems becomes increasingly important with the recent progress in experimental control on dissipative systems and their technological exploitation . A central question in open quantum systems concerns the fate of quantum correlations, and the possibility of controlling them by engineering the competition between the Hamiltonian dynamics and the coupling to a bath. Such a question is challenging from a theoretical point of view, as numerical methods faithfully accounting for quantum correlations are either relying on exact diagonalization, limiting drastically the sizes that can be treated; or on approximations on the range or strength of quantum correlations, associated to the choice of a specific Ansatz for the density matrix. In this work we propose a new method to treat open quantum-spin lattices, based on stochastic quantum trajectories for the solution of the open-system dynamics. Along each trajectory, the hierarchy of equations of motion for many-point spin-spin correlators is truncated to a given finite order, assuming that multivariate $k$-th order cumulants vanish for $k$ exceeding a cutoff $k_c$. This allows tracking the evolution of quantum spin-spin correlations up to order $k_c$ for all length scales. We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay. We convincingly assess the existence of steady-state phase transitions from paramagnetic to ferromagnetic, and back to paramagnetic, upon increasing one of the Hamiltonian couplings; as well as their classical Ising nature. Moreover, the approach allows us to show the presence of significant quantum correlations in the vicinity of the dissipative critical point, and to unveil the presence of spin squeezing, a tight lower bound to the quantum Fisher information.