论文标题
吉布斯状态在具有马尔可夫结构的一般一维晶格系统上的独特性和统计特性
Uniqueness and statistical properties of the Gibbs state on general one-dimensional lattice systems with markovian structure
论文作者
论文摘要
Let $M$ be a compact metric space and $X = M^{\mathbb{N}}$, we consider a set of admissible sequences $X_{A, I} \subset X$ determined by a continuous admissibility function $A : M \times M \to \mathbb{R}$ and a compact set $I \subset \mathbb{R}$.鉴于Lipschitz的连续潜力$φ:x_ {a,i} \ to \ mathbb {r} $,我们证明了Gibbs状态$μ_φ$的独特性,我们表明它是Gibbs-Bowen措施并满足了中心限制。
Let $M$ be a compact metric space and $X = M^{\mathbb{N}}$, we consider a set of admissible sequences $X_{A, I} \subset X$ determined by a continuous admissibility function $A : M \times M \to \mathbb{R}$ and a compact set $I \subset \mathbb{R}$. Given a Lipschitz continuous potential $φ: X_{A, I} \to \mathbb{R}$, we prove uniqueness of the Gibbs state $μ_φ$ and we show that it is a Gibbs-Bowen measure and satisfies a central limit theorem.