论文标题

数据驱动的数值站点响应

Data-driven numerical site response

论文作者

Garcia-Suarez, Joaquin, Cornet, Arthur, Wattel, Sacha, Molinari, Jean-François

论文摘要

地震触发的地面运动的预测是地震学界和岩土技术工程工程的主要关注点。占据此类问题的子场被称为现场响应分析(SRA),鉴于其简单性,其一维风味(1D-SRA)特别受欢迎。尽管经过简单的几何环境,但在数字上考虑在地壳的柔软的上部土壤地层中震动时仍然存在最高的挑战:如何在数学上对高材料,耗散,耗散,潜在的依赖性土壤行为进行建模。启发式模型和现象学构成定律均已开发出来,以应对挑战,它们都不适用于数值限制或物理不足或两者兼而有之。我们在此提议将新型数据驱动的范式带来,从而使需要完全构建组成型行为模型。数据驱动的计算力学(DDCM)是固体力学中的新型范式,它正在越来越受欢迎。特别是,它的多尺度版本依赖于研究微观结构的响应(在土壤的情况下,代表性含量含有晶粒)来填充一个数据集,该数据集随后用于为宏观上的响应提供信息。该手稿提出了多尺度DDCM到1D-SRA的首次应用:首先,我们证明了其使用离散数据集处理波浪传播问题的能力,该数据集是通过使用离散元素方法(DEM)进行抽样谷物混合物(DEM)来代替构型法律而代替构型法律的,然后我们将其专门应用于软土中的传播,从而代替了构型法律。我们通过与常规有限元分析(FEA)进行比较来验证实现,并证明使用DDCM时恢复了传统的放大功能。

Prediction of ground motion triggered by earthquakes is a prime concern for both the seismology community and geotechnical earthquake engineering one. The subfield occupied with such a problem is termed site response analysis (SRA), its one-dimensional flavor (1D-SRA) being particularly popular given its simplicity. Despite the simple geometrical setting, a paramount challenge remains when it comes to numerically consider intense shaking in the soft upper soil strata of the crust: how to mathematically model the high-strain, dissipative, potentially rate-dependent soil behavior. Both heuristics models and phenomenological constitutive laws have been developed to meet the challenge, neither of them being exempt of either numerical limitations or physical inadequacies or both. We propose herein to bring the novel data-driven paradigm to bear, thus giving away with the need to construct constitutive behavior models altogether. Data-driven computational mechanics (DDCM) is a novel paradigm in solid mechanics that is gaining popularity; in particular, the multiscale version of it relies on studying the response of the microstructure (in the case of soil, representative volumes containing grains) to populate a dataset that is later used to inform the response at the macroscale. This manuscript presents the first application of multiscale DDCM to 1D-SRA: first, we demonstrate its capacity to handle wave propagation problems using discrete datasets, obtained via sampling grain ensembles using the discrete element method (DEM), in lieu of a constitutive law and then we apply it specifically to analyze the propagation of harmonic waves in a soft soil deposit that overlies rigid bedrock. We validate the implementation via comparison to regular finite elements analyses (FEA) and demonstrate that traditional amplification functions are recovered when using the DDCM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源