论文标题

叶面疾病鉴定的图像质量评估(Agropath)

Image Quality Assessment for Foliar Disease Identification (AgroPath)

论文作者

Ahmed, Nisar, Asif, Hafiz Muhammad Shahzad, Saleem, Gulshan, Younus, Muhammad Usman

论文摘要

作物疾病是对粮食安全的主要威胁,其快速识别对于防止产量损失很重要。由于缺乏必要的基础设施,因此很难迅速识别这些疾病。计算机视觉的最新进展和智能手机渗透的渗透为智能手机辅助疾病识别铺平了道路。大多数植物疾病在植物的叶面结构上留下了特定的文物。这项研究于2020年在巴基斯坦拉合尔工程技术大学计算机科学与工程系进行,以检查基于叶片的植物疾病鉴定。这项研究为叶面疾病鉴定提供了基于神经网络的深度解决方案,并纳入了图像质量评估,以选择执行识别所需质量的图像,并将其命名为农业病理学家(AGRO PATH)。新手摄影师捕获的图像可能包含噪音,缺乏结构和模糊,从而导致诊断失败或不准确。此外,Agropath模型具有99.42%的叶面疾病鉴定精度。拟议的添加对于在农业领域的叶面疾病鉴定的应用特别有用。

Crop diseases are a major threat to food security and their rapid identification is important to prevent yield loss. Swift identification of these diseases are difficult due to the lack of necessary infrastructure. Recent advances in computer vision and increasing penetration of smartphones have paved the way for smartphone-assisted disease identification. Most of the plant diseases leave particular artifacts on the foliar structure of the plant. This study was conducted in 2020 at Department of Computer Science and Engineering, University of Engineering and Technology, Lahore, Pakistan to check leaf-based plant disease identification. This study provided a deep neural network-based solution to foliar disease identification and incorporated image quality assessment to select the image of the required quality to perform identification and named it Agricultural Pathologist (Agro Path). The captured image by a novice photographer may contain noise, lack of structure, and blur which result in a failed or inaccurate diagnosis. Moreover, AgroPath model had 99.42% accuracy for foliar disease identification. The proposed addition can be especially useful for application of foliar disease identification in the field of agriculture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源