论文标题

有效评估稳定的Lévy过程功能的期望及其极值

Efficient evaluation of expectations of functions of a stable Lévy process and its extremum

论文作者

Boyarchenko, Svetlana, Levendorskiĭ, Sergei

论文摘要

得出了稳定的lévy流程$ x $及其最高$ \ bar x $功能期望的积分表示。作为示例,累计概率分布函数(CPDF)为$ x_t,\ barx_t $,$ x_t $和$ \ barx_t $的联合CPDF,以及$(\ be x_t- \ barx_t)_++$,$ \ $ \ be> 1 $的期望(\ be x_t- \ barx_t)_ $ he> 1 $,以及有效的cpd。最有效的数值方法使用保形加速技术和简化的梯形规则。

Integral representations for expectations of functions of a stable Lévy process $X$ and its supremum $\bar X$ are derived. As examples, cumulative probability distribution functions (cpdf) of $X_T, \barX_T$, the joint cpdf of $X_T$ and $\barX_T$, and the expectation of $(\be X_T-\barX_T)_+$, $\be>1$, are considered, and efficient numerical procedures for cpdfs are developed. The most efficient numerical methods use the conformal acceleration technique and simplified trapezoid rule.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源