论文标题
从一到许多:激光雷达和相机融合的动态跨注意网络
From One to Many: Dynamic Cross Attention Networks for LiDAR and Camera Fusion
论文作者
论文摘要
激光镜头和相机是两个用于自动驾驶中3D感知的互补传感器。 LIDAR点云具有准确的空间和几何信息,而RGB图像为上下文推理提供了纹理和颜色数据。为了共同利用LiDAR和相机,现有的融合方法倾向于根据校准,即一对一的映射,将每个3D点与一个投影图像像素对齐。但是,这些方法的性能高度依赖于校准质量,这对传感器的时间和空间同步敏感。因此,我们提出了一个动态的交叉注意(DCA)模块,并具有新型的一对一的交叉模式映射,该模块从最初的投影到邻域中学习了多个偏移,从而产生了对校准误差的耐受性。此外,提出了A \ textIt {动态查询增强}来感知与模型无关的校准,从而进一步增强了DCA对初始未对准的容忍度。名为“动态跨注意网络”(DCAN)的整个融合体系结构利用了多级图像特征,并适应了点云的多个表示,这使DCA可以用作插件融合模块。对Nuscenes和Kitti的广泛实验证明了DCA的有效性。拟议的DCAN在Nuscenes检测挑战上胜过最先进的方法。
LiDAR and cameras are two complementary sensors for 3D perception in autonomous driving. LiDAR point clouds have accurate spatial and geometry information, while RGB images provide textural and color data for context reasoning. To exploit LiDAR and cameras jointly, existing fusion methods tend to align each 3D point to only one projected image pixel based on calibration, namely one-to-one mapping. However, the performance of these approaches highly relies on the calibration quality, which is sensitive to the temporal and spatial synchronization of sensors. Therefore, we propose a Dynamic Cross Attention (DCA) module with a novel one-to-many cross-modality mapping that learns multiple offsets from the initial projection towards the neighborhood and thus develops tolerance to calibration error. Moreover, a \textit{dynamic query enhancement} is proposed to perceive the model-independent calibration, which further strengthens DCA's tolerance to the initial misalignment. The whole fusion architecture named Dynamic Cross Attention Network (DCAN) exploits multi-level image features and adapts to multiple representations of point clouds, which allows DCA to serve as a plug-in fusion module. Extensive experiments on nuScenes and KITTI prove DCA's effectiveness. The proposed DCAN outperforms state-of-the-art methods on the nuScenes detection challenge.