论文标题

可控的面部操纵和紫外线地图通过自我监督的学习生成

Controllable Face Manipulation and UV Map Generation by Self-supervised Learning

论文作者

Li, Yuanming, Kwak, Jeong-gi, Han, David, Ko, Hanseok

论文摘要

尽管最近通过生成对抗网络(gans)操纵面部属性取得了非常成功,但在明确控制诸如姿势,表达,照明等特征的明确控制方面仍然存在一些挑战。最近的方法通过组合2D生成模型和3DMM来实现对2D图像的明确控制。但是,由于3DMM缺乏现实主义和纹理重建的清晰度,因此合成图像与3DMM的渲染图像之间存在域间隙。由于渲染的3DMM图像仅包含面部区域,因此直接计算这两个域之间的损失是不理想的,因此训练有素的模型将是偏差的。在这项研究中,我们建议通过控制3DMM的参数来明确编辑验证式样式的潜在空间。为了解决域间隙问题,我们提出了一个名为“ MAP和EDIT”的Noval网络,以及一种简单但有效的属性编辑方法,以避免渲染和合成图像之间的直接损失计算。此外,由于我们的模型可以准确地生成多视图的面部图像,而身份保持不变。作为一种副产品,结合可见性口罩,我们提出的模型还可以生成质地丰富和高分辨率的紫外面部纹理。我们的模型依赖于验证的样式,并且提出的模型以自我监督的方式进行了训练,而无需任何手动注释或数据集训练。

Although manipulating facial attributes by Generative Adversarial Networks (GANs) has been remarkably successful recently, there are still some challenges in explicit control of features such as pose, expression, lighting, etc. Recent methods achieve explicit control over 2D images by combining 2D generative model and 3DMM. However, due to the lack of realism and clarity in texture reconstruction by 3DMM, there is a domain gap between the synthetic image and the rendered image of 3DMM. Since rendered 3DMM images contain facial region only without the background, directly computing the loss between these two domains is not ideal and the resultant trained model will be biased. In this study, we propose to explicitly edit the latent space of the pretrained StyleGAN by controlling the parameters of the 3DMM. To address the domain gap problem, we propose a noval network called 'Map and edit' and a simple but effective attribute editing method to avoid direct loss computation between rendered and synthesized images. Furthermore, since our model can accurately generate multi-view face images while the identity remains unchanged. As a by-product, combined with visibility masks, our proposed model can also generate texture-rich and high-resolution UV facial textures. Our model relies on pretrained StyleGAN, and the proposed model is trained in a self-supervised manner without any manual annotations or datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源