论文标题
歌曲情感识别:音频功能与人工神经网络之间的性能比较
Song Emotion Recognition: a Performance Comparison Between Audio Features and Artificial Neural Networks
论文作者
论文摘要
当歌曲创作或演奏时,歌手/词曲作者通常会意图通过它表达感受或情感。对于人类而言,将音乐作品或表演中的情感与观众的主观感知相匹配可能会非常具有挑战性。幸运的是,此问题的机器学习方法更简单。通常,它需要一个数据集,从中提取音频功能将此信息提取到数据驱动的模型,从而又将训练以预测给定歌曲与目标情绪匹配的概率是什么。在本文中,我们研究了最近出版物中最常见的功能和模型来解决此问题,揭示了哪些最适合识别无伴奏歌曲中的情感。
When songs are composed or performed, there is often an intent by the singer/songwriter of expressing feelings or emotions through it. For humans, matching the emotiveness in a musical composition or performance with the subjective perception of an audience can be quite challenging. Fortunately, the machine learning approach for this problem is simpler. Usually, it takes a data-set, from which audio features are extracted to present this information to a data-driven model, that will, in turn, train to predict what is the probability that a given song matches a target emotion. In this paper, we studied the most common features and models used in recent publications to tackle this problem, revealing which ones are best suited for recognizing emotion in a cappella songs.