论文标题
2D特征值问题II:瑞利商迭代和应用
2D Eigenvalue Problem II: Rayleigh Quotient Iteration and Applications
论文作者
论文摘要
在本文的第一部分中,我们引入了2D特征值问题(2DEVP),并提出了2DEVP的理论结果及其与特征值优化的内在连接。在这一部分中,我们设计了一个瑞利商迭代(RQI)类似算法,即2DRQI简而言之,用于计算2DEVP的2D- eigentriplet。 2DRQI的执行$ 2 \ times $至$ 8 \ times $ $ $ $ $ $比现有的大规模特征值优化的现有算法$ \ times $快,这是由瑞利商的Minmax和稳定矩阵不稳定的距离所产生的。
In Part I of this paper, we introduced a 2D eigenvalue problem (2DEVP) and presented theoretical results of the 2DEVP and its intrinsic connetion with the eigenvalue optimizations. In this part, we devise a Rayleigh quotient iteration (RQI)-like algorithm, 2DRQI in short, for computing a 2D-eigentriplet of the 2DEVP. The 2DRQI performs $2\times$ to $8\times$ faster than the existing algorithms for large scale eigenvalue optimizations arising from the minmax of Rayleigh quotients and the distance to instability of a stable matrix.